
2018 MOAA Gunga Bowl: Solutions

Andover Math Club

1 Set 1 Solutions

1. We pair up the terms as follows:

1+2+3+4+5+6+7+8+9+10+11 = (1+11)+(2+10)+(3+9)+(4+8)+(5+7)+6 = 12·5+6 = 66 .

Proposed by Justin Chang

2. By the difference of squares formula, 36− x2 = (6− x)(6 + x). Thus,

1 · 11 + 2 · 10 + 3 · 9 + 4 · 8 + 5 · 7 + 6 · 6 = 62 · 6− 52 − 42 − 32 − 22 − 12 − 02 = 216− 5 · 6 · 11

6
= 161 .

Alternatively, the expression can be computed directly:

1 · 11 + 2 · 10 + 3 · 9 + 4 · 8 + 5 · 7 + 6 · 6 = 11 + 20 + 27 + 32 + 35 + 36 = 161.

Proposed by Justin Chang

3. Note that
1

x(x+ 1)
=

1

x
− 1

x+ 1
.

We can telescope this sum into

m

n
=

1

1
− 1

2
+

1

2
− 1

3
+

1

3
− · · · − 1

10
+

1

10
− 1

11
= 1− 1

11
=

10

11
,

which results in 10 + 11 = 21 .

Proposed by Justin Chang

2 Set 2 Solutions

4. We compute 2! = 2, 0! = 1, 1! = 1, and 8! = 40320. Then (2 + 1)(1 + 40320) = 120963 .

Proposed by Sebastian Zhu

5. We prime factorize 252 = 22 · 32 · 7. The number n is prime, so it must be one of the numbers 2, 3, 7.
The roots of x2 − 5x+ 6 = (x− 2)(x− 3) are 2 and 3, so we know that n must be 7 .

Proposed by Justin Chang

6. This is equivalent to summing an arithmetic sequence with first term 11, common difference 5, and
last term 11 + 6 · 5 = 41. Therefore the sum is equal to

n(a1 + an)

2
=

7(11 + 41)

2
= 182 .

Proposed by Sebastian Zhu

1



3 Set 3 Solutions

7. We can apply Heron’s formula to triangle ABC. We define a = BC, b = CA, and c = AB. Since its
semiperimeter s = a+b+c

2 = 16, we have

[ABC] =
»
s(s− a)(s− b)(s− c) =

√
16 · 9 · 4 · 3 = 24

√
3,

which results in 24 + 3 = 27 .

Proposed by William Yue

8. The key observation is that no move changes the score. If Sebastian performs a move on a token at
(x, y), then the score after the move equals the score before the move:

1

2x+1+y
+

1

2x+y+1
=

2

2x+y+1
=

1

2x+y
.

Therefore, the answer is equal to the original total score, which is just 1
20+0 = 1 .

Proposed by William Yue

9. The second condition is just equivalent to the number being divisible by 3. The least four or five digit
number that is a multiple of 3 is 1002, and the greatest is 99999. Thus, our answer is

99999− 1002

3
+ 1 = 33000 .

Proposed by William Yue

4 Set 4 Solutions

10. The desired area consists of two 45-45-90 triangles with legs of length one and one 45◦ sector of a circle
with radius

√
2. Therefore, the desired area is

n = 2

Å
1

2
· 1 · 1

ã
+

1

8
· π(
√

2)2 = 1 +
π

4
.

Computation reveals that b100 + 25πc = 178 .

Proposed by William Yue

11. We have two cases here:

(a) There is a tree in the middle square. As a result, only the four corner squares can have trees
planted in them. There are then

(
4
3

)
ways to pick three that work.

(b) There is no tree in the middle square. As a result, the only ways to pick four squares are
to choose all of the corner squares or to choose all of the central edge squares.
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There are
(
4
3

)
+ 2 = 6 ways in total.

Proposed by William Yue

12. We perform a digit-by-digit extraction as follows. Since n3 ≡ 7 (mod 10), we know that n ≡ 3
(mod 10). Let n = 10a+ 3. Then

367 ≡ n3 ≡ 1000a3 + 900a2 + 270a+ 27 ≡ 70a+ 27 (mod 100).

Then
70a ≡ 40 (mod 100) =⇒ a ≡ 2 (mod 10).

Let a = 10b+ 2. Then n = 10(10b+ 2) + 3 = 100b+ 23, so

367 ≡ n3 ≡ 106b3 + 690000b2 + 158700b+ 12167 ≡ 700b+ 167 (mod 1000).

Therefore
700b ≡ 200 (mod 1000) =⇒ b ≡ 6 (mod 10).

However, b must be a digit, as otherwise n = 100b+ 23 > 1000. Thus b = 6, and n = 623 .

Proposed by Sebastian Zhu

5 Set 5 Solutions

13. The most straightforward way to solve this problem is to try to find the explicit values of
4
√

97 + 56
√

3

and
4
√

97− 56
√

3. Optimistically, we set

4
»

97 + 56
√

3 = a+ b
√

3

97 + 56
√

3 =
Ä
a+ b

√
3
ä4

97 + 56
√

3 = a4 + 4
√

3a3b+ 18a2b2 + 12
√

3ab3 + 9b4.

Then, matching rational and irrational parts, we find that 97 = a4+18a2b2+9b4 and 56 = 4a3b+12ab3.
We look at the second equation because it has less terms:

56 = 4a3b+ 12ab3

14 = ab(a2 + 3b2).

Since we want a and b to be positive integers, we find that (a, b) = (2, 1) satisfies this equation, and

in fact it also satisfies the other equation, 97 = a4 + 18a2b2 + 9b4! Therefore
4
√

97 + 56
√

3 = 2 +
√

3.

Similarly, we find that
4
√

97− 56
√

3 = 2−
√

3, so that

4
»

97 + 56
√

3 +
4
»

97− 56
√

3 = 2 +
√

3 + 2−
√

3 = 4 .

Proposed by William Yue

14. Recall that the measure of an inscribed angle is half that of the central angle. Therefore

∠COE = 2∠CBE = ∠B = 68◦.

Also, since AD is a height we know that ∠DAC = 90◦ − ∠C. Thus

∠DOC = 2∠DAC = 180◦ − 2∠C = 52◦.

Now we find
∠DOE = ∠DOC + ∠COE = 68◦ + 52◦ = 120◦.

Now draw the perpendicular from O to DE, and call the point of intersection M . Note that OM

bisects ∠DOE, so that ∠MOE = 60◦. This means that ME =
√
3
2 OE since 4OME is a 30− 60− 90

right triangle. Finally, DE = 2ME =
√

3OE, so DE2 = 3 ·OE2 = 432 .
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O

A

B

C

D

E

M

Proposed by Sebastian Zhu

15. We can factor the first term by adding and subtracting 4n2;

4n4 + 1 = 4n4 + 4n2 + 1− 4n2 = (2n2 + 1)2 − (2n)2 = (2n2 + 2n+ 1)(2n2 − 2n+ 1)

by difference of squares. This number is only prime if one of its factors is equal to 1. Since 0 < 1−2n+
2n2 < 1+2n+2n2, only 1−2n+2n2 can equal 1. This factor equals 1 when 2n2−2n = 0⇒ 2n(n−1) = 0,

so n = 1 is our only answer. The sum of all possible n is 1 .

Proposed by William Yue

6 Set 6 Solutions

16. For the moment, we can ignore the condition p ≥ q ≥ r, as the equation is symmetric. Since 11 divides
the right hand side of the equation, it also divides the left. Thus, pqr = 11, and since p, q, r are primes,
we must have one of them equal to 11. Without loss of generality, allow p = 11. Then

qr = q + r + 11

qr − q − r + 1 = 12

(q − 1)(r − 1) = 12

by Simon’s Favorite Factoring Trick. This results in three possible cases:

• q − 1 = 12 and r − 1 = 1, which leads to q = 13, r = 2,

• q − 1 = 6 and r − 1 = 2, which leads to q = 7, r = 3,

• q − 1 = 4 and r − 1 = 3, which leads to q = 5, r = 4, which doesn’t work as 4 isn’t prime.

This results in the two triplets (p, q, r) = (13, 11, 2) and (11, 7, 3), as we must incorporate p ≥ q ≥ r.

Thus the sum of all possible values of p is 13 + 11 = 24 .

Proposed by Sebastian Zhu

17. Let xn represent
(· · · ((2⊕ 2)⊕ 2)⊕ · · · 2),

where there are n instances of ⊕. We have that,

xn+1 =
1

1/2 + 1/xn
.

4



Since x0 = 2
0+1 and x1 = 2

1+1 , it is safe to assume that xn = 2
n+1 for all n. In fact, we can show this

by induction. Assuming xn−1 = 2
n , we have

xn+1 =
1

1/2 + n/2
=

2

n+ 1
,

as desired. We have already resolved the base case of 0. Therefore, x2018 = 2
2019 , which results in

2 + 2019 = 2021 .

Proposed by William Yue

18. Write 20181001 − 1 as
(2018− 1)(20181000 + 2018999 + · · ·+ 2018 + 1).

Then
20181001 − 1

2017
= 20181000 + 2018999 + · · ·+ 2018 + 1,

which reduces to
1 + 1 + · · ·+ 1 + 1 ≡ 1001 (mod 2017).

Proposed by Sebastian Zhu

7 Set 7 Solutions

19. Since ∠XAY = 45◦, the arc XY in circle ω1 must have length 2 · 45◦ = 90◦, so ∠XO1Y = 90◦.
Similarly, ∠XO2Y = 90◦. Therefore, as O1X = O1Y and O2X = O2Y , O1XY is a 45 − 45 − 90
triangle and O2XY is equilateral. Therefore, if D is the intersection of O1O2 and XY ,

O1O2 = O1D +O2D =
1

2
·XY +

√
3

2
·XY = 30 + 30

√
3.

X

Y

O1 O2

A

B

C

D

Now, let C be the foot of the altitude from A onto BO2. Then, AC = O1O2 and

BC = BO2 −AO1 = O2X −O1X = 60− 30
√

2.

Finally, using the Pythagorean Theorem on right triangle ABC gives

AB =
√
AC2 +AB2 =

»
(30 + 30

√
3)2 + (60− 30

√
2)2 =

»
9000− 3600

√
2 + 1800

√
3,

which results in 9000 + 3600 + 1800 = 14400 .
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Proposed by William Yue

20. Square the equation to obtain

(x2)x
2

= 2160 = 3232.

Therefore x2 = 32 =⇒ x3 = 32
√

32 = 128
√

2. Using our computation skills we find that

181 < 128
√

2 < 182,

so the answer is 181 .

Proposed by Sebastian Zhu

21. Suppose the bag contains b blue balls after Sam replaces some of them. Then, it has b + 15 red balls
and 735 − 2b green balls. The expected number of green balls when selecting 500 balls at random is
thus

E
ï

500

750
(735− 2b)

ò
= 490− 4

3
E[b].

Note that b ranges over all the values from 1 to 367, each with equal probability (as the number of blue
balls fixes the number of red and green ones). Therefore, E[b] = 184, so our answer is b490− 4

3 · 184c =

244 .

Proposed by William Yue

8 Set 8 Solutions

Let’s solve the first problem (problem 22) first (in terms of the other answers).

W X

YZ

M

N

P

Consider 4XY Z. We see that XN is a median of this triangle, and that WY is also a median of the triangle
because the diagonals of a rectangle bisect each other. Thus P is the centroid of 4XY Z. Using the fact
that the medians of a triangle divide the triangle into six regions of equal area, we see that

[MPNY ] =
1

3
[XY Z] =

1

3
· 1

2
[WXY Z] =

1

6
[WXY Z],

so [MPNY ] =
1

6

√
5B ·

√
5C =

5

6

√
BC. We conclude that A =

5

6

√
BC, which implies that A2 =

25

36
BC.

We now turn our attention to the third problem (problem 24). We see that x+ y = A implies that

x2 + 2xy + y2 = A2

x2 − 2xy + y2 = A2 − 4xy

(x− y)2 = A2 − 1

9
B2

|x− y| =
…
A2 − 1

9
B2,
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which means that C =

…
A2 − 1

9
B2, and therefore C2 = A2 − 1

9
B2. Plugging in A2 =

25

36
BC and letting

x =
B

C
, we see that

C2 =
25

36
BC − 1

9
B2

36 = 25x− 4x2

0 = (4x− 9)(x− 4).

Therefore
B

C
=

9

4
=⇒ B =

9

4
C or

B

C
= 4 =⇒ B = 4C. The first case gives A2 =

9

16
C2 + C2 =⇒

A =
5

4
C. If we let C = 4k then we get the solution (A,B,C) = (5k, 9k, 4k). The second case gives

A2 =
16

9
C2 +C2 =⇒ A =

5

3
C. If we let C = 3k then we get the solution (A,B,C) = (5k, 12k, 3k). Armed

with this knowledge, we inspect the second problem (problem 23).

One thing catches our attention in this knowledge: 3 - x, z. This means that 3 - C + 3 =⇒ 3 - C,
using the last congruence. Therefore the case (A,B,C) = (5k, 12k, 3k) is ruled out by this condition, be-
cause C is always divisible by 3 in this case. Now we know that (A,B,C) = (5k, 9k, 4k). Therefore the first
congruence reduces to

xy ≡ 5k ≡ 0 (mod 5)

and the second congruence reduces to

yz ≡ 14k ≡ 0 (mod 7).

Multiplying these congruences by z and x respectively yields

xyz ≡ 0 (mod 5)

and
xyz ≡ 0 (mod 7).

Finally, multiplying the last congruence by y yields

xyz ≡ (C + 3)y ≡ 0 (mod 9),

since we know that 9 | y. Therefore xyz ≡ 0 (mod 315), and since x, y, z are positive integers we know
that xyz ≥ 315. To show that equality can hold is trivial; simply let (x, y, z) = (5, 9, 7). This produces the

solution B = 315. Then k = 35, and we get the solution (A,B,C) = (175, 315, 140) . This is the answer; it

can be verified to work by simply plugging the numbers back into each of the problems.

Note. We made one huge implicit assumption in the problem, and it was that (A,B,C) = (5k, 12k, 3k)
implies that A is divisible by 5, B is divisible by 12, and C is divisible by 3; in other words, we assumed that
k was an integer. Why can we do this? All we know is that A,B,C are positive integers, nothing about k.

However, we do know that k =
A

5
, so we can indeed conclude that k is rational. Then

12A

5
= B, so it is

possible to now conclude that 5 | A. A similar argument proves this for the other cases; in general, this is
true whenever all the constants in front of the k are relatively prime when considered together. Therefore,
even though 12 and 3 are not relatively prime, we can still conclude that k is an integer because they are
relatively prime altogether with 5. This argument works for the case (A,B,C) = (5k, 9k, 4k) as well.

22. 175

Proposed by William Yue
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23. 315

Proposed by Sebastian Zhu

24. 140

Proposed by Sebastian Zhu

9 Set 9 Solutions

25. After making the key observation that 2a2 + 2b2 = (a+ b)2 + (a− b)2, we write

2017 · 128 = (92 + 442) · 128

= (352 + 532) · 64

= 2802 + 4242.

Thus a+ b = 704 .

Proposed by Sebastian Zhu

26. The side length of the flatbread is equal to 1√
2
. The volume of enclosed syrup is maximized when the

side length of the pyramid is maximized. Let this side length be s. Then by packing the faces like so

(see image), we can achieve s =
1√
2

1+
√

3
2

=
√
2

2+
√
3

= 2
√

2 −
√

6. It is not hard to see that the volume of

the square pyramid in terms of s is given by V = bh
3 = s2

3 h = s3

3
√
2
, so the maximum volume of syrup

enclosed is equal to

V = s3

3
√
2

= 52−30
√
3

3 = 52−
√
2700

3 and thus a+ b+ c = 52 + 2700 + 3 = 2755.

Proposed by Andy Xu

27. Reflect P over y = x and y = 0 to get P1 and P2, respectively, and let M and N be the midpoints of
PP1 and PP2, respectively. Then

PQ+QR+RP = P1Q+QR+RP2 ≥ P1P2 = 2MN,

so it suffices to minimize MN . Now let P = (x, y), so that M =
(
x+y
2 , x+y2

)
and N = (x, 0). Then

MN =

 (x+ y

2
− x
)2

+
(x+ y

2
− 0
)2

=

…
1

2
(x2 + y2) =

√
2

2
OP.

Therefore it suffices to minimize OP . By the triangle inequality, it is clear that OP is minimized when
its extension passes through C. We can compute that OC = 25, so OP ≥ OC − PC = 25 − 6 = 19,
which means that PQ+QR+RP ≥ 2MN =

√
2OP ≥ 19

√
2. It is clear that such a setup is achievable,

thus the answer is
Ä
19
√

2
ä2

= 722 .
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M

O

P1

P2

Q

R

Proposed by Sebastian Zhu

10 Set 10 Solutions

28. The main idea of this problem is to subtract off the areas of triangles AEF,BDF,CED from triangle
ABC. We have

[AEF ]

[ABC]
=

[AEF ]

[AEB]
· [AEB]

[ABC]
=
AF

AB
· AE
AC

,

where [K] is the area of polygon K. Similarly,

[BDF ]

[ABC]
=
BF

BA
· BD
BC

and
[CED]

[ABC]
=
CD

CB
· CE
CA

.

Now we just need to compute a few side lengths. Since AE and AF are both tangents to the incircle,
we must have AE = AF . Suppose x = AE = AF , y = BF = BD, and z = CD = CE. Then,

x+ y = AB = 7,

y + z = BC = 12,

z + x = CA = 13.

Solving this system gives x = 4, y = 3, z = 9. Then,

[DEF ]

[ABC]
= 1− [AEF ]

[ABC]
− [BDF ]

[ABC]
− [CED]

[ABC]
=

18

91
.

This gives 18 + 91 = 109 .

9
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A C

I

D

E

F

Proposed by William Yue

29. First, note that if Sebastian selects a token at (x, y, z), this token contributes a score of S = 1
2x+y+z

before replacing the token. After replacing the token, the three tokens together contribute a score of

3 · 1

2x+y+z+1
=

3

2
S.

Therefore it is most beneficial to perform moves on tokens with the highest score, which are the tokens
on (x, y, z) with the lowest sum x + y + z. Let’s say a token at position (x, y, z) has value x + y + z,
so that replacing a token of value k produces three tokens of value k + 1. Then after the first move
(forced), we have three tokens of value 1. Replacing these three tokens yields nine tokens of value 2,
after four total replacements. Replacing these nine tokens yields 27 tokens of value 3, after 13 total
replacements. Replacing these 27 tokens yields 81 tokens of value 4, after 40 total replacements. Now
we have only 60 replacements left, so we can replace 60 of the 81 tokens of value 4, which yields 21
tokens of value 4 and 180 tokens of value 5. Finally, note that the score of a token given its value k is
equal to 1

2k
, so the final score of this set of tokens is

21 · 1

24
+ 180 · 1

25
=

111

16
.

Then 111 + 16 = 127 .

Proposed by William Yue

30. We approach this problem by recursion. Note that the digits reduce into 0, 1, 2, 3 (mod 5). We let an
be the number of n digit numbers with the given digits, and with a digit sum equivalent to 0 (mod 5),
and we define bn, cn, dn, en analogously for 1, 2, 3, 4 (mod 5). Clearly, a1 = b1 = c1 = d1 = 1 and
e1 = 0. Then, for every new digit added,

an = cn−1 + dn−1 + en−1 + an−1,

as we can add a digit of any residue modulo 5 except 4. Now, we can set

sn = an + bn + cn + dn + en,

so
an = sn−1 − bn−1.

Similarly,

bn = sn−1 − cn−1,
cn = sn−1 − dn−1,
dn = sn−1 − en−1,
en = sn−1 − an−1.

10



Now, we can plug these formulas into the right hand side of an = sn−1 − bn−1, yielding

an = sn−1 − bn−1
= sn−1 − (sn−2 − cn−2)

= sn−1 − sn−2 + sn−3 − dn−3
= sn−1 − sn−2 + sn−3 − sn−4 + en−4
= sn−1 − sn−2 + sn−3 − sn−4 + sn−5 − an−5

It suffices to compute sn. However, this is just the total number of numbers with digits as 1, 5, 7, or 8
(as the digit sum can be anything), so sn = 4n, as there are four choices for each digit. Thus,

a6 = 45 − 44 + 43 − 42 + 4− 1 =
46 − 1

5
= 819 .

Note. Here, we will present an elegant alternate method, utilizing complex numbers.

After using the same definitions of an, bn, cn, dn, en as above, we let ζ = cos 2π
5 + i sin 2π

5 = e
2iπ
5 be the

first fifth root of unity. Then, notice that

anζ
0 + bnζ

1 + cnζ
2 + dnζ

3 + enζ
4 =

∑
x1,x2,...,xn∈{1,5,7,8}

ζx1+x2+···+xn .

The idea here is that the right hand side takes in all inputs of n digit integers with digits 1, 5, 7, 8, and
the root of unity ζ takes the sum modulo 5, outputting the left hand side. Now, the right hand side is
equal to

(ζ1 + ζ5 + ζ7 + ζ8)n = (1 + ζ + ζ2 + ζ3)n,

and since
∑4
i=0 ζ

i = 0, this is equal to (−ζ4)n. If we take n = 6, we obtain

a6ζ
0 + b6ζ

1 + c6ζ
2 + d6ζ

3 + e6ζ
4 = ζ24 = ζ4, (1)

so
a6ζ

0 + b6ζ
1 + c6ζ

2 + d6ζ
3 + (e6 − 1)ζ4 = 0

We proceed with a lemma.

Lemma. For any prime p and integers a0, a1, · · · ap−1, if

a0ζ
0 + a1ζ

1 + · · ·+ ap−1ζ
p−1 = 0,

then a0 = a1 = · · · = ap−1.

Proof. Just consider the polynomials P (X) = a0 + a1X + a2X
2 + · · · + ap−1Xp−1 and Q(X) =

1 +X +X2 + · · ·+Xp−1. It is pretty well known that Q(X) is irreducible over Q. In fact,

Q(X + 1) =
(X + 1)p − 1

X
=

p−1∑
i=0

Ç
p

p− i− 1

å
Xi,

which is irreducible by Eisenstein’s Criterion on the prime p, as p |
(
p
i

)
for all 0 < i < p. However, Q

and P share the root ζ, so Q must divide P . Thus, a0 = a1 = · · · = ap−1.

We apply this lemma on (1), giving

a6 = b6 = c6 = d6 = e6 − 1 = k

for some constant k. Then,

5k + 1 = a6 + b6 + c6 + d6 + e6 = s6 = 46,

so a6 =
46 − 1

5
= 819 .

Proposed by William Yue
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11 Set 11 Solutions

31. We break the sum into

32∑
i=16

1

Ti
+

32∑
i=16

1

Si
= 2

(
32∑
i=16

1

i(i+ 1)

)
+

3

2

(
32∑
i=16

2

i(i+ 2)

)
.

These fractions decompose into

1

i(i+ 1)
=

1

i
− 1

i+ 1
and

2

i(i+ 2)
=

1

i
− 1

i+ 2
.

This allows us to telescope the sums into

2

Å
1

16
− 1

17
+

1

17
− 1

18
+ · · ·+ 1

32
− 1

33

ã
+

1

16
− 1

18
+

1

17
− 1

19
+ · · ·+ 1

32
− 1

34

= 2

Å
1

16
− 1

33

ã
+

3

2

Å
1

16
+

1

17
− 1

33
− 1

34

ã
=

2815

17952
,

which results in 2815 + 17952 = 20767 .

Proposed by William Yue

32. We reflect Will’s barnhouse B(24, 15) over the river at y = 2 to a point B′, and over the strip mall at
y =
√

3x to a point B′′. The idea now is that if Will’s house is at H, he reaches the river at point X,
and the strip mall at point Y , then the distance he travels is

HX +XB +BY + Y H = HX +XB′ +B′′Y + Y H.

This distance is clearly minimized when H lies on B′B′′. Now it suffices to find the points B′ and B′′,
and we can intersect lines B′B′′ and y = x.

B

B′

B′′

H

X

Y

K

Clearly, B′ = (24,−11), since we reflect B over a horizontal line. As for B′′, we will determine the
foot of the perpendicular from B onto y =

√
3x, which we will call K. Since BK is perpendicular to

y =
√

3x, its slope is − 1√
3
. Therefore, BK is defined by

y − 15 = − 1√
3

(x− 24).

12



Intersecting this line with y =
√

3x, we can solve the system to get

√
3x = −

√
3

3
x+ 8

√
3 + 15

4
√

3

3
x = 15 + 8

√
3

x =
45 + 24

√
3

4
√

3
=

15
√

3 + 24

4
.

We can solve for y, so

K =

Ç
15
√

3 + 24

4
,

45 + 24
√

3

4

å
.

Since K is the midpoint of BB′′, we can determine B′′ to be

B′′ =

Ç
15
√

3− 24

2
,

24
√

3 + 15

2

å
.

Now, we need to find the equation for B′B′′. Its slope is

(24
√

3 + 15)/2− (−11)

(15
√

3− 24)/2− 24
=

37− 24
√

3

−72 + 15
√

3
,

so its defined by

y + 11 =
37 + 24

√
3

−72 + 15
√

3
(x− 24).

It remains to intersect this line with y = x. Solving,

(−72 + 15
√

3)x+ 11(−72 + 15
√

3) = (37 + 24
√

3)x− 24(37 + 24
√

3).

(−109− 9
√

3)x = −96− 741
√

3.

Therefore

x =
96 + 741

√
3

109 + 9
√

3
=

(96 + 741
√

3)(109− 9
√

3)

1092 − (9
√

3)2
=

79905
√

3− 9543

11638
,

which results in 79905 + 3 + 9543 + 11638 = 101089 .

Proposed by William Yue

33. Take the equation n2 = (m+ 1)3 −m3 for some integer m. Then

n2 = 3m2 + 3m+ 1

4n2 − 1 = 12m2 + 12m+ 3

(2n+ 1)(2n− 1) = 3(2m+ 1)2.

Because 2n + 1 and 2n − 1 are relatively prime, we know that one of these terms must be a perfect
square and the other one must be three times a perfect square. However, we cannot have 2n − 1 be
three times a square, because then 2n+ 1 would be a perfect square congruent to 2 (mod 3), which is
impossible. Therefore 2n− 1 is a perfect square; say 2n− 1 = a2.

Now we proceed to the second equation. Set 2n+ 287 = k2, and plug in 2n− 1 = a2 to get

a2 + 288 = k2

288 = (k + a)(k − a).

13



Since maximizing n is the same as maximizing a, we need only to maximize the difference between the
two factors k + a and k − a. We quickly see that 288 and 1 are impossible, as they do not produce
integer values for k and a. However, 144 and 2 do work, yielding k = 73 and a = 71. Then

2n− 1 = 712

2n− 1 = 5041

n = 2521,

so the maximum possible value of n is 2521 . Plugging it back in shows that it indeed works, yielding
25212 = 14563 − 14553 and 2 · 2521 + 287 = 732.

Proposed by Sebastian Zhu

12 Set 12 Solutions

34. https://en.wikipedia.org/wiki/Collatz conjecture has some great information about the Collatz conjec-

ture if you’re interested. In case you were wondering, the Collatz sequence of 670617279 , the answer,
has a length of 986 steps!

Proposed by Sebastian Zhu

35. We claim that

ex(n,Ki) =
i− 2

i− 1
· n

2 − r2

2
+

Ç
r

2

å
,

where r is the remainder when n is divided by i − 1. In fact, this known as Turan’s Theorem in
Extremal Graph Theory. Note that equality can hold; take a complete multipartite graph of i − 1
groups, r of which with q+ 1 elements, and i− 1− r of which with q elements, where n = q(i− 1) + r.
This is called a Turan Graph. Now, we will prove Turan’s using the following lemma.

Lemma (Zarankiewicz’s Lemma). If G is a graph of degree n without a subgraph Ki, then it contains

a vertex with degree of at most
ö
i−2
i−1n

ù
.

Proof. Let N(v) denote the neighborhood of a vertex v; that is, the set of all vertices that are connected
to v by an edge. For the sake of contradiction, assume otherwise. Consider an arbitrary vertex v1. It
must satisfy

|N(v1)| >
õ
i− 2

i− 1
· n
û
> 0,

so there exists v2 ∈ N(v1). Then, points that are neighbors to both:

|N(v1) ∩N(v2)| = |N(v1)|+ |N(v2)| − |N(v1) ∪N(v2)|

≥ 2

Å
1 +

õ
i− 2

i− 1
· n
ûã
− n > 0,

so there exists a v3 ∈ N(v1) ∩N(v2). We continue this for the rest of the vertices, and since

k⋂
j=1

N(vj) ≥ k
Å

1 +

õ
i− 2

i− 1
· n
ûã
− (k − 1)n > 0

for all k, we set j = i− 1 so that we can choose a vertex

vi ∈
i−1⋂
j=1

N(vj),

but then v1, v2, . . . , vi form a complete graph on i vertices, which violates the assumption.

14
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Now we will use this lemma to prove Turan’s Theorem. We induct on n. Suppose the statement is
true for n = k. We will show it is true for n = k + 1. Since the graph doesn’t contain a Ki, applying
Zarankiewicz’s Lemma on the graph means we can choose a vertex x such that deg(x) ≤ b i−2i−1 · (k + 1)c.
If we remove this vertex and all edges attached to it, we get a graph of k vertices, and by our inductive
hypothesis, the maximal number of edges in this graph is precisely

ex(k,Ki) =
i− 2

i− 1
· k

2 − r2k
2

+

Ç
rk
2

å
,

where rk is the remainder when k is divided by i− 1. Then, after adding back that vertex, it suffices
to confirm that

i− 2

i− 1
· k

2 − r2k
2

+

Ç
rk
2

å
+

õ
i− 2

i− 1
· (k + 1)

û
=
i− 2

i− 1
· (k + 1)2 − r2

2
+

Ç
r

2

å
,

where r is the remainder when k + 1 is divided by i − 1, which is in fact true. This completes the
inductive step. The Turan Graph suffices for every base case. Then, the problem reduces to computing

2018∑
i=2

i− 2

i− 1
· 20182 − (r(2018, i− 1))2

2
+

Ç
r(2018, i− 1)

2

å
= 4090111833 ,

where r(2018, i− 1) is the remainder when 2018 is divided by i− 1.

Proposed by William Yue

36. No solution for this problem. We are unaware of any strategy that would net you the greatest expected
number of points, but if you find one, we’d be happy to hear it!

Proposed by William Yue and Sebastian Zhu
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