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1. Let the feet of the perpendiculars from B to AC and DE be X and Y , respectively. By Heron’s
Formula,

[ABC] =
√

7 · 1 · 2 · 4 = 2
√

14.

Therefore, BX = 2
√
14
3 . By the Pythagorean Theorem,

CX =

…
25− 56

9
=

13

3
.

To finish, notice that Y D = XC and BY = 6 +BX, so

BD2 = BY 2 + Y D2 =

Ç
2
√

14 + 18

3

å2

+

Å
13

3

ã2
= 61 + 8

√
14.

Our answer is 61 + 8 + 14 = 83 .
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Proposed by William Yue

2. Note that

16 = x2 + 2 +
1

x2
=

Å
x+

1

x

ã2
4 = x+

1

x
,

since x > 0. In order to construct higher powers of x and 1
x , we perform the following manipulation:Å

x2 +
1

x2

ãÅ
x+

1

x

ã
= x3 +

1

x3
+ x+

1

x

x3 +
1

x3
= 14 · 4− 4

= 52.

1



We repeat the process: Å
x3 +

1

x3

ãÅ
x+

1

x

ã
= x4 +

1

x4
+ x2 +

1

x2

x4 +
1

x4
= 52 · 4− 14

= 194.

Finally: Å
x4 +

1

x4

ãÅ
x+

1

x

ã
= x5 +

1

x5
+ x3 +

1

x3

x5 +
1

x5
= 194 · 4− 52

= 724 .

Proposed by Shen Duan

3. We know that ∠BFC = 90◦ = ∠BEC, because BE and CF are altitudes. This means that BFEC
is cyclic (can be inscribed in a circle) with its center on the midpoint of BC. Therefore we can apply
power of a point on A with respect to the circumcircle of BFEC. This implies that

AF (AF + 31) = 84 · 24 = 2016.

Thus we can conclude that AF = 32 .
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F

Proposed by William Yue

4. Let’s examine some easy cases first. If Michael chooses 99, then Andrew automatically loses. Thus 99
is a losing position, which means that if it’s your turn to move and 99 is written on the board, then,
no matter what you do, you automatically lose under best play (in this case your opponent doesn’t
even get a chance to mess up). Noting this, when Michael picks any number between 91 and 98 inclu-
sive, Andrew can just increment this integer to 99, thus handing Michael a losing position. Therefore
all integers between 91 and 98 are winning positions, which means that you have some strategy that
guarantees you to win no matter what your opponent does.

Let’s take a step back and consider exactly what Michael is trying to achieve. Michael wants to reach a
winning position, which is equivalent to handing Andrew a losing position. Therefore if Michael wants
to win, he must choose a losing position to begin, since then Andrew will lose. Examining what we
have discovered so far, we see that if Michael chooses 90, then Andrew is forced to hand a winning
position to Michael. Therefore 90 is also losing, which forces 82− 89 to be winning. Continuing with
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this reasoning, we see that all multiples of 9 are losing, and everything else is winning. This makes
sense, because if you are handed something other than a multiple of 9, you can always choose an integer
between 1 and 8 to make the number a multiple of 9. On the other hand, if you receive a multiple of
9, then you will have no choice but to hand the other person a number which is not a multiple of 9.
Finally, we note that the game must eventually terminate, as every move increments the integer by at
least 1. Therefore our answer is the sum of all multiples of 9 less than 100, which is

9 + 18 + · · ·+ 99 = 9 · 66 = 594 .

Proposed by Sebastian Zhu

5. The problem is nowhere near as hard as it seems. The expected number of problems Mr. DoBa solves

in a minute while listening to music is 0.6 · 1
3

+ 0.4 · 1
5

= 0.28. But the average number of problems he

solves in a minute when not listening to music must also equal this number! Thus m = 0.28, and so
1000m = 280 .

Proposed by Sebastian Zhu

6. We will assume, without loss of generality, that m ≥ n and the grid is m rows of n. Let’s first count
R. A rectangle in this grid is uniquely defined by two horizontal grid lines and two vertical grid lines.
The number of ways to choose two horizontal grid lines is

(
m+1
2

)
, and the number of ways to choose

two vertical grid lines is
(
n+1
2

)
, so

R =

Ç
n+ 1

2

å
·
Ç
m+ 1

2

å
=
mn(m+ 1)(n+ 1)

4
.

Now we will count S. We will consider cases of what the side length of the square is. Suppose it is i,
with 1 ≤ i ≤ n (as n ≤ m). There are n− i+ 1 ways to choose its vertical position, and m− i+ 1 ways
to choose its horizontal position. Thus, there are (n− i+ 1)(m− i+ 1) squares of side length i in the
grid. Summing over all i from 1 to n gives

S =
n∑

i=1

(n− i+ 1)(m− i+ 1) =
n∑

j=1

j(m− n+ j),

where j = n − i + 1. Note that summing from i1 = 1 to i2 = n is equivalent to summing from
j2 = n− i1 + 1 = n to j1 = n− i2 + 1 = 1. We now break this summation into two:

n∑
j=1

j(m− n+ j) =
n∑

j=1

(m− n)j +
n∑

j=1

j2

= (m− n)
n∑

j=1

j +
n∑

j=1

j2

= (m− n)
n(n+ 1)

2
+
n(n+ 1)(2n+ 1)

6

=
n(n+ 1)

6
(3m− n+ 1).

Therefore,

759

50
=

n(n+1)m(m+1)
4

n(n+1)
6 (3m− n+ 1)

=
3m(m+ 1)

2(3m− n+ 1)
.

Thus,
253(3m− n+ 1) = 25m(m+ 1).
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Expanding and combining like terms gives

25m2 + 25m = 759m− 253n+ 253

25m2 − 734m = 253− 253n.

Since the right hand side is at most 0, the left hand side is too. Thus,

25m2 − 734m ≤ 0⇒ 25m ≤ 734,

so m ≤ 29. Also, since 25m(m+1) = 253(3m−n+1), we must have 253 = 11 ·23 divide into m(m+1).
Clearly the only m ≤ 29 that satisfies this is m = 22. Plugging this back in gives

25 · 22 · 23 = 11 · 23(67− n),

so 67− n = 50, which implies n = 17. Therefore, mn = 22 · 17 = 374 .

Proposed by William Yue

7. Consider each integer as a base 13 integer. Then the operation is equivalent to “chopping off” the last
digit of this number at every step in its 13-pop. Therefore the condition reduces to finding the number
of base 13 integers with at most 2018 digits with no 0s in their base 13 representation; this is because
if there is a 0 in the base 13 representation of the integer, then eventually it will become the units digit
of some number in its 13-pop, and consequently be divisible by 13. This total number of integers can
easily be found to be

12 + 122 + 123 + · · ·+ 122018 =
12(122018 − 1)

11

by casework on the number of digits. It remains to calculate this number (mod 1000). It is clear
that the number is congruent to 4 (mod 8), so we will focus on the number (mod 125). Observe the
following:

12(122018 − 1)

11
≡ 12 · 91(122018 − 1) (mod 125)

≡ 92(1218 − 1) (mod 125)

≡ 92(199 − 1) (mod 125)

≡ 92(144 · 19− 1) (mod 125)

≡ 92(712 · 19− 1) (mod 125)

≡ 92(41 · 19− 1) (mod 125)

≡ 92 · 28 (mod 125)

≡ 76 (mod 125).

Since 76 ≡ 4 (mod 8), we see that
12(122018 − 1)

11
≡ 76 (mod 1000), so our answer is 76 .

Proposed by Sebastian Zhu

8. We can simplify the first radical as follows: 
1 +

√
3

2
=

 
4 + 2

√
3

4

=

√
4 + 2

√
3

2

=

√
3 + 1

2
.
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Similarly,  
1−
√

3

2
=

√
3− 1

2
.

Thus, we can rewrite the problem as:

k

2
=

Ç√
3 + 1

2

åx

+

Ç√
3− 1

2

åx

Now note that (
√
3+1
2 ) + (

√
3−1
2 ) =

√
3 and (

√
3+1
2 ) · (

√
3−1
2 ) = 1

2 . Using this, we can write:ÇÇ√
3 + 1

2

ån

+

Ç√
3− 1

2

ånå
·
√

3 =

ÇÇ√
3 + 1

2

ån

+

Ç√
3− 1

2

ånå
·
Ç√

3 + 1

2
+

√
3− 1

2

å
=

Ç√
3 + 1

2

ån+1

+

Ç√
3− 1

2

ån+1

+
1

2

(Ç√
3 + 1

2

ån−1
+

Ç√
3− 1

2

ån−1)

If we let an = (
√
3+1
2 )n + (

√
3−1
2 )n, we can write:

an
√

3 = an+1 +
1

2
an−1

Using this recursion, we can calculate that:

a1 =
√

3, a2 = 2, a3 =
3
√

3

2
,

a4 =
7

2
, a5 =

11
√

3

4
, a6 =

13

2
.

The solutions we seek are the ones that have at most one factor of 2 in the denominator. Now we
will prove that for all k, the power of 2 in the denominator of ak+4 will be 2 greater than the power
of 2 in the denominator of ak. This way, once we have a term, an, with exactly one power of 2 in
the denominator, we know that the term an+4 and all subsequent terms an+4m will have powers of 2
greater than one in their denominators.
To prove this, we will solve the recursion for ak+4 in terms of ak and ak+1.
We can write:

ak+2 = ak+1

√
3− 1

2
ak,

ak+3 = ak+2

√
3− 1

2
ak+1

= (ak+1

√
3− 1

2
ak)
√

3− 1

2
ak+1

=
5

2
ak+1 −

√
3

2
ak,

ak+4 = ak+3

√
3− 1

2
ak+2

= (ak+3

√
3− 1

2
ak+2)

√
3− 1

2
(ak+1

√
3− 1

2
ak)

= 2ak+1

√
3− 5

4
ak.

Now, let ak = bk
2m and ak+1 = bk+1

2n . Plugging these values into our new recursion gives:

ak+4 =
bk
√

3

2m−1
+

5bk+1

2n+2
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We can see that n + 2 > m − 1 because the exponent of 2 in the denominator can never incerase by
3. Using this, we can place the two fraction under a common denominator of 2n+2 by multiplying the
first term by 2n+2−(m−1) = 2n−m+3, giving us:

ak+4 =
2n−m+3bk+1

√
3− 5bk

2n+2

The numerator must be odd since and even number minus an odd number is odd, so the power of 2 in
the denominator of ak+4 is 2 greater than that of ak, which concludes our proof. Since the terms a3
through a6 all have a denominator of at least 2, the only possible integral values of k result from a2,
a4, and a6, giving a sum of 4 + 7 + 13 = 24

Proposed by Max Tao

9. Let H1 and H2 be the respective orthocenters of ABD and CBD. We begin by proving the following
claim:

Lemma. O1 is the midpoint of the segment H1O, where O is the circumcenter of ABD.

Proof. We will show the reflections of H1 over E,Z,W lie on the circumcircle of ABC. In fact, if A′

is the reflection of H1 over E, then

∠BA′D = ∠BH1D = ∠C1H1B1 = 180◦ − ∠BAD,

so ABA′D is cyclic. Thus, there exists a homothety centered at H1 of scale factor two that sends the
circumcircle of EZW to the circumcircle of ABC. This also sends the center of the first circle, O1 to
the center of the second circle, O, so H1O = 2H1O1 and O1 lies on OH1. Therefore, O1 is the midpoint
of OH1.

A

B D

H1

A′

B′
C ′

E

ZW

A1

B1

C1 OO1

Similarly, O2 is the midpoint of OH2. Therefore, O1O1 = 1
2H1H2. Now, let F and G be the reflections

of H1 and H2 over BD, respectively. Since

∠BFD = ∠BH1D = 180◦ − ∠BAD,

F lies on the circumcircle of ABCD. Similarly, G does too. However, AF ‖ CG, as they are both
perpendicular to BD. Therefore,

H1H2 = FG = AC = 800,

where the first equality is true because of reflection, and the second is true since AFCG is a cyclic
(and therefore isosceles) trapezoid. Thus, O1O2 = 1

2 · 800 = 400 .
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A

B

C

D

H1

H2

F

G

OO1

O2

Note. In this problem, O1 is known as the nine-point center of ABD. This is because its the center of
the nine-point circle, which passes through following nine points in a triangle ABC with orthocenter
H:

• The midpoints of the sides BC,CA,AB

• The feet of the altitudes from A,B,C

• The midpoints of AH,BH,CH

A proof of the existence of the nine-point circle is very similar to the proof of our lemma; it uses a
homothety centered at H that sends nine points on the circumcircle of ABC to the nine desired points
of the nine-point circle.

Proposed by William Yue

10. Suppose that k satisfies the problem statement. In order for Vincent to cross the threshold k
2016 in

ratio of green balls to total balls, he must choose a green ball in the position that allows him to pass
that threshold. Therefore it must be true that sometime during his game, the bag contains m green
balls out of n total balls such that

m

n
<

k

2016

and
m+ 1

n+ 1
>

k

2016
.

The first inequality becomes 2016m < nk, and the second inequality becomes 2016m > nk+ k− 2016.
However, since m and n are integers, we can strengthen each of these inequalities to become

2016m ≤ nk − 1

and
2016m ≥ nk + k − 2015.

Thus

nk − 1 ≥ 2016m ≥ nk + k − 2015

k ≤ 2014.

7



It seems like this is the entire solution set for the problem. However, this approach is actually the
wrong one! Look a little more closely at the inequality

nk − 1 ≥ 2016m ≥ nk + k − 2015

2015− k ≥ nk − 2016m ≥ 1.

Using Bézout’s Lemma, the smallest attainable positive value of nk − 2016m is gcd(k, 2016) as n and
m vary. Therefore, k satisfies the problem statement if and only if gcd(k, 2016) ≤ 2015− k. Note that

gcd(k, 2016) = gcd(2016, 2016− k).

This follows from the Euclidean algorithm. Therefore our goal is to count the k which satisfy

gcd(2016, 2016− k) ≤ (2016− k)− 1

gcd(2016, 2016− k) < 2016− k.

Equivalently, let us count the k that do not satisfy this inequality. Note that

gcd(2016, 2016− k) ≤ 2016− k,

with equality if and only if 2016 − k divides 2016. Therefore the values of k that do not satisfy the
inequality are precisely those in which 2016 − k divides 2016. To finish, note that if 2016 − k = d,
where d is a divisor of 2016, then k = 2016− d. Thus our answer is

1 + 2 + · · ·+ 2015− (2016− 1)− (2016− 2)− · · · − (2016− 1008)− (2016− 2016)

= 1008 · 2015− 2016 · d(2016) + σ(2016)

= 1008 · 2015− 2016 · 36 + 63 · 13 · 8
= 504(4030− 144 + 13)

= 504 · 3899

= 23 · 32 · 72 · 557,

using the fact that the number of divisors d(2016) of 2016 = 25 · 32 · 7 is 6 · 3 · 2 = 36 and the sum of
the divisors σ(2016) of 2016 is (1 + 2 + 4 + 8 + 16 + 32)(1 + 3 + 9)(1 + 7) = 63 · 13 · 8 = 6552. Since

557 is prime, the answer is 557 .

Proposed by Sebastian Zhu
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