MOAA 2019: Team Round

1. [45] Jeffrey stands on a straight horizontal bridge that measures 20000 meters across. He wishes to place a pole vertically at the center of the bridge so that the sum of the distances from the top of the pole to the two ends of the bridge is 20001 meters. To the nearest meter, how long of a pole does Jeffrey need?
2. [50] The lengths of the two legs of a right triangle are the two distinct roots of the quadratic

$$
x^{2}-36 x+70 .
$$

What is the length of the triangle's hypotenuse?
3. [55] For how many ordered pairs of positive integers (a, b) such that $a \leq 50$ is it true that $x^{2}-a x+b$ has integer roots?
4. [60] Brandon wants to split his orchestra of 20 violins, 15 violas, 10 cellos, and 5 basses into three distinguishable groups, where all of the players of each instrument are indistinguishable. He wants each group to have at least one of each instrument and for each group to have more violins than violas, more violas than cellos, and more cellos than basses. How many ways are there for Brandon to split his orchestra following these conditions?
5. [65] Let $A B C$ be a triangle with $A B=A C=10$ and $B C=12$. Define ℓ_{A} as the line through A perpendicular to $\overline{A B}$. Similarly, ℓ_{B} is the line through B perpendicular to $\overline{B C}$ and ℓ_{C} is the line through C perpendicular to $\overline{C A}$. These three lines $\ell_{A}, \ell_{B}, \ell_{C}$ form a triangle with perimeter $\frac{m}{n}$ for relatively prime positive integers m and n. Find $m+n$.
6. [70] Let $f(x, y)=\left\lfloor\frac{5 x}{2 y}\right\rfloor+\left\lceil\frac{5 y}{2 x}\right\rceil$. Suppose x, y are chosen independently uniformly at random from the interval $(0,1]$. Let p be the probability that $f(x, y)<6$. If p can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers m and n, compute $m+n$.
(Note: $\lfloor x\rfloor$ is defined as the greatest integer less than or equal to x and $\lceil x\rceil$ is defined as the least integer greater than or equal to x.)
7. [75] Suppose $A B C$ is a triangle inscribed in circle ω. Let A^{\prime} be the point on ω so that $A A^{\prime}$ is a diameter, and let G be the centroid of $A B C$. Given that $A B=13, B C=14$, and $C A=15$, let x be the area of triangle $A G A^{\prime}$. If x can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers, compute $100 n+m$.
(Note: The centroid of a triangle is the intersection of its three medians $A M, B N, C P$, where M, N, P are the midpoints of $B C, C A, A B$, respectively.)
8. [80] Suppose that

$$
\frac{(\sqrt{2})^{5}+1}{\sqrt{2}+1} \times \frac{2^{5}+1}{2+1} \times \frac{4^{5}+1}{4+1} \times \frac{16^{5}+1}{16+1}=\frac{m}{7+3 \sqrt{2}}
$$

for some integer m. How many 0 's are in the binary representation of m ? (For example, the number $20=10100_{2}$ has three 0 's in its binary representation.)
9. [85] Jonathan finds all ordered triples (a, b, c) of positive integers such that $a b c=720$. For each ordered triple, he writes their sum $a+b+c$ on the board. (Numbers may appear more than once.) What is the sum of all the numbers written on the board?
10. [90] Let \mathcal{S} be the set of all four digit palindromes (a palindrome is a number that reads the same forwards and backwards). The average value of $|m-n|$ over all ordered pairs (m, n), where m and n are (not necessarily distinct) elements of \mathcal{S}, is equal to $\frac{p}{q}$, for relatively prime positive integers p and q. Find $p+q$.

MOAA 2019: Team Round
 60 minutes

Team Name: \qquad

Problems in the Team Round are weighted based on the problem number. The value of each problem is shown in brackets next to each problem.

Write your answers in the spaces provided below. All answers are integers between 0 and 1,000,000, inclusive.

1		2	
3		4	
5		6	
7		8	
7			
9			

