MOAA 2019 Gunga Bowl Solutions

MOAA 2019 Gunga Bowl Set 1

1. On the tenth day, Farmer John withdraws 100% of the remaining milk from the bucket. Therefore, the answer is 0 .
2. The product of the first four composite positive integers is

$$
w=4 \cdot 6 \cdot 8 \cdot 9=1728
$$

and the product of the first four prime positive integers is

$$
j=2 \cdot 3 \cdot 5 \cdot 7=210
$$

The difference between these two number is $1728-210=1518$.
3. The maximum percentage of people who like both dogs and cats is 60%. Obviously we can't have more than this, since only 60% of people like cats, and this is attainable when everyone who likes cats also likes dogs.

The minimum percentage of people who like both dogs and cats is 35%. We can't have less than this because then the percentage of people who like either dogs or cats would be more than $65+70-35=100 \%$. This is attainable when, of the 65% of remaining people, 40% like only dogs and 25% like only cats.

Therefore, the maximum number of people is 36 and the minimum number of people is 21 . Their difference is $36-21=15$.

MOAA 2019 Gunga Bowl Set 2

4. We can factor the expression as $x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right)$. Note that $x^{2}+1>0$, so in order for this to be prime, one of the factors must be equal to $1 . x^{2}+1=1$ gives $x=0$, which doesn't work. $x^{2}-1=1$ gives no integer solutions. Therefore there are 0 solutions.
5. Observe that $\triangle A B D$ is a $5-12-13$ triangle, so $B D=5 \cdot 5=25$. (Alternatively, the Pythagorean Theorem works just fine.) Now, noting that $\angle A B D=\angle D A C$ since they are both complementary to $\angle B A D$, we know that $\triangle A B D \sim \triangle C A D$ by AA similarity (note that $\angle B D A=\angle A D C=90^{\circ}$). Thus

$$
\frac{B D}{D A}=\frac{A D}{D C} \Longrightarrow B D \cdot D C=A D^{2}
$$

Then $D C=\frac{60^{2}}{25}=12^{2}=144$. Finally, the area of $\triangle A B C$ is half base times height, or

$$
\frac{1}{2} \cdot A D \cdot B C=\frac{1}{2} \cdot 60 \cdot(25+144)=5070
$$

6. Write

$$
3!+4!+5!=(6-2)+(24+1)+(120+1)=2^{2}+5^{2}+11^{2}
$$

so the answer is $2+5+11=18$. Alternatively, one can write out the sum $6+24+120=150$, and subsequently notice that $150=100+49+1=10^{2}+7^{2}+1^{2}$. The sum in this case is also 18 . There is one more set of three squares that sum to 150 , namely $10^{2}+5^{2}+5^{2}$; however, this set violates the distinctness condition.

MOAA 2019 Gunga Bowl Set 3

7. It is clear that a square and a regular hexagon can share at most 2 vertices. For Max, he just needs to chose two vertices of the nailed square in $\binom{4}{2}$ ways, and then he can attach a hexagon to it. Visibly he can attach it in 5 ways, giving a total of

$$
M=\binom{4}{2} \cdot 5=30
$$

For Vincent, he chooses two vertices of the nailed hexagon in $\binom{6}{2}$ ways, and then he can attach a square to it. It is also clear that he can attach the square on in 3 ways, giving a total of

$$
V=\binom{6}{2} \cdot 3=45
$$

The final answer is $45-30=15$.
Some may ask conceptually why the answer isn't 0 . The answer is due to rotations: on Vincent's hexagon, he has more ways to rotate the same diagram to get different configurations. This way of thinking is corroborated when we notice that V is exactly $\frac{6}{4}$ times M.
8. We have

$$
\begin{aligned}
a & =\sqrt{a+\sqrt{a+\sqrt{a+\cdots}}} \\
a & =\sqrt{a+a} \\
a^{2} & =2 a \\
a & =2
\end{aligned}
$$

since $a \neq 0$.
Although the following is not expected of contestants, it is possible to prove convergence of the square roots in the problem by the monotone convergence theorem. There are two steps: showing that every element in the sequence defined by $a_{1}=\sqrt{a}$ and $a_{k+1}=\sqrt{a+a_{k}}$ for positive integers k is less than a, and showing that the sequence is monotonically increasing, both via induction.
9. We can factor

$$
(x-y)(x+y)=x^{2}-y^{2}=2019=3 \cdot 673
$$

Then we can note that given $x-y=a$ and $x+y=b$, we can solve this for $x=\frac{a+b}{2}$ and $y=\frac{b-a}{2}$, so each pair (a, b) corresponds to a unique integer solution (x, y), as long as a and b have the same parity. We can factor 2019 into two ordered positive factors in four ways:

$$
2019=1 \cdot 2019=3 \cdot 673=673 \cdot 3=2019 \cdot 1
$$

However, there are the same number of factorings into two ordered negative factors as well. Since in all these cases the two factors have the same parity, our answer is 8 .
10. We can factor

$$
p^{3}+q^{3}+r^{3}-3 p q r=(p+q+r)\left(p^{2}+q^{2}+r^{2}-p q-q r-r p\right)
$$

so we just need to compute

$$
p^{2}+q^{2}+r^{2}-p q-q r-r p=289+49+64-119-136-56=91
$$

11. Note that, given any 2×2 grid with 3 of the 4 entries filled in, the last entry is always fixed. Thus we can color in the five squares forming a cross in the 3×3 grid (shaded below) in any fashion, and this coloring fixes the four corner squares. There are $2^{5}=32$ ways to color in the five cross squares.

12. Suppose our 7 -respecting sequence is

$$
x, x+1, x+2, x+3, x+4, x+5, x+6
$$

We need $1|x, 2| x+1,3|x+2,4| x+3,5|x+4,6| x+5,7 \mid x+6$. However, this is equivalent to needing $1|x-1,2| x-1,3|x-1,4| x-1,5|x-1,5| x-1,7 \mid x-1$ by subtracting the divisor from each of the dividends. Thus, it is necessary and sufficient for $x-1$ to be divisible by all of $1,2,3,4,5,6,7$. Then $x-1$ must be a multiple of 420 , so that $x=1,421,841$ are the three smallest possible values of x. These sum to the answer of 1263 .

MOAA 2019 Gunga Bowl Set 5

13. We claim that the only possible values of I are the integers between 0 and 8 , inclusive, giving a total of 36 . The case for 8 intersection points is given below, and it's easy to see how to adjust this for smaller cases.

Now we claim that 9 or more intersections is impossible. By the Pigeonhole Principle, this would imply that one side of the quadrilateral is intersected by all three sides of the triangle. However, this is impossible: if our triangle is $A B C$, then since $A B$ intersects a side of the quadrilateral, A, B are on opposite sides of that side. Similarly, B, C and C, A are on opposite sides of that side, a contradiction since A cannot be on the opposite side to itself.
14. The probability that Mr. DoBa picks a multiple of 10 during any given pick is

$$
\begin{aligned}
p & =2^{-10}+2^{-20}+2^{-30}+\cdots \\
& =\frac{2^{-10}}{1-2^{-10}} \\
& =\frac{1}{2^{10}-1} \\
& =\frac{1}{1023}
\end{aligned}
$$

Experienced contestants know that for an event that occurs with a constant probability p, the expected number of times before the event occurs is $\frac{1}{p}$. We go through the derivation below.

The probability that Mr. DoBa wins in one turn is $\frac{1}{1023}$. The probability that he wins in two turns is $\frac{1022}{1023} \cdot \frac{1}{1023}$. Continuing in this way, the probability that he wins in exactly n turns is $\left(\frac{1022}{1023}\right)^{n-1} \cdot \frac{1}{1023}$. Thus, the expected number of turns he will take is, by definition,

$$
E=1 \cdot \frac{1}{1023}+2 \cdot \frac{1022}{1023} \cdot \frac{1}{1023}+3 \cdot\left(\frac{1022}{1023}\right)^{2} \cdot \frac{1}{1023}+\cdots
$$

Letting $x=\frac{1022}{1023}$, we find

$$
\begin{aligned}
E-x E & =\frac{1}{1023}\left(1+2 x+3 x^{2}+\cdots-x-2 x^{2}-3 x^{3}-\cdots\right) \\
(1-x) E & =\frac{1}{1023}\left(1+x+x^{2}+\cdots\right) \\
(1-x) E & =\frac{1}{1023} \cdot \frac{1}{1-x} \\
E & =\frac{1}{1023} \cdot \frac{1}{(1-x)^{2}} \\
E & =\frac{1}{1023} \cdot 1023^{2} \\
E & =1023 .
\end{aligned}
$$

15. We can create a table in modulo 5 of all the possible values of x^{y}, where the different values of x run along the top and the different values of y run along the left side:

$x^{y}(\bmod 5)$	1	2	3	4
1	1	2	3	4
2	1	4	4	1
3	1	3	2	4
4	1	1	1	1

Note that 1 appears eight times, 2 appears two times, 3 appears two times, and 4 appears four times. Let us first consider the case where $a^{b} \equiv c^{d} \equiv 1(\bmod 5)$. Then, they both have to be one of the 8 values, giving $8^{2}=64$ possibilities. Similarly, we can get $2^{2}=4,2^{2}=4$, and $4^{2}=16$ possibilities for the other cases. Hence, we get the answer

$$
64+4+4+16=88
$$

MOAA 2019 Gunga Bowl Set 6

16. Note that $160=2^{5} \cdot 5$. We will thus count the number of factors of 2 and 5 in the numerator and determine the suitable x from that information.

The number of factors of 2 in the numerator is $80+40+20+10+5+2+1=158$ by Legendre's formula. (This adds one for each number divisible by 2 , then one more for each number divisible by 4 , then one more for each number divisible by 8 , and so on.) Therefore, we require $5 x \leq 158 \Longrightarrow x \leq 31$. Also by Legendre's formula, the number of factors of 5 in the numerator is $32+6+1=39$. Thus we require $x \leq 39$. Then $x \leq 31$ is the limiting restriction, and the maximum possible value of x is 31 .
17. We have two cases:

- G is on the same side of O as A.

Because the triangles are similar, note that the 360 degrees of rotation must be evenly split by the six triangles. Therefore, $\angle A O B=60^{\circ}$, and all six triangles are $30-60-90$ ones. Therefore

$$
O G=2 O F=4 O E=8 O D=16 O C=32 O B=64 O A
$$

so $\frac{O G}{O A}=64$.

- G is on the opposite side of O as A.

Now, the 180 degrees of rotation must be evenly split by the six triangles. Therefore, $\angle A O B=30^{\circ}$, and we have six $30-60-90$ triangles again, but this time in a different orientation. In this case,

$$
O G=\frac{2}{\sqrt{3}} O F=\frac{4}{3} O E=\frac{8}{3 \sqrt{3}} O D=\frac{16}{9} O C=\frac{32}{9 \sqrt{3}} O B=\frac{64}{27} O A
$$

so $\frac{O G}{O A}=\frac{64}{27}$.

Summing these two cases gives

$$
64+\frac{64}{27}=\frac{1792}{27}
$$

which gives an answer of $1792+27=1819$.
18. Let's compute each term separately. Let $\lceil x\rceil$ denote the least integer greater than or equal to x.

- $f(1)=\left\lceil 1^{\sqrt{1}}\right\rceil$, which equals 1 .
- $f(2)=\left\lceil 2^{\sqrt{2}}\right\rceil$. Note that since $\sqrt{2} \approx 1.4$, we can bound $1<\sqrt{2}<\frac{3}{2}$. (We can also just square all three terms to confirm this.) Therefore,

$$
2^{1}<2^{\sqrt{2}}<2^{3 / 2}
$$

However, since $8<9$, taking the square root of both sides gives $2^{3 / 2}<3$. Therefore $2^{\sqrt{2}}$ is between 2 and 3 , so its ceiling is 3 .

- $f(3)=\left\lceil 3^{\sqrt{3}}\right\rceil$. We can do a similar bound by noting $\sqrt{3} \approx 1.7$, which gives $\frac{5}{3}<\sqrt{3}<\frac{7}{4}$. (Also can be confirmed by squaring all terms.) Therefore,

$$
3^{5 / 3}<3^{\sqrt{3}}<3^{7 / 4}
$$

However, note that $6<3^{5 / 3}$ since $216=6^{3}<3^{5}=243$, and $3^{7 / 4}<7$ since $2187=3^{7}<7^{4}=2401$. Therefore $3^{\sqrt{3}}$ is between 6 and 7 , so $\left\lceil 3^{\sqrt{3}}\right\rceil$ is 7 .

- $f(4)=\left\lceil 4^{\sqrt{4}}\right\rceil$, which equals 16 .

Adding these four values gives $1+3+7+16=27$.

MOAA 2019 Gunga Bowl Set 7

19. Firstly, $F_{3}=2, F_{4}=3$, and $F_{5}=5$. Recall Fermat's Little Theorem, which states that for a prime p and integer a relatively prime to p,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Using this, we can begin to test primes. Note that it's fairly easy to test primes that are just smaller than 20 , and indeed, we find that

$$
2^{20}+3^{20}+5^{20} \equiv 2^{2}+3^{2}+5^{2} \equiv 38 \equiv 0 \quad(\bmod 19)
$$

Thus we need only to test all odd primes less than 19 to see if there is a smaller one.

- When $p=3$,

$$
2^{20}+3^{20}+5^{20} \equiv 2^{0}+0+5^{0} \equiv 2 \quad(\bmod 3)
$$

- When $p=5$,

$$
2^{20}+3^{20}+5^{20} \equiv 2^{0}+3^{0}+0 \equiv 2 \quad(\bmod 5)
$$

- When $p=7$,

$$
2^{20}+3^{20}+5^{20} \equiv 2^{2}+3^{2}+5^{2} \equiv 38 \equiv 3 \quad(\bmod 7)
$$

- When $p=11$,

$$
2^{20}+3^{20}+5^{20} \equiv 2^{0}+3^{0}+5^{0} \equiv 3 \quad(\bmod 11)
$$

- When $p=13$,

$$
2^{20}+3^{20}+5^{20} \equiv 2^{8}+3^{8}+5^{8} \equiv 3^{2}+3^{2}+(-1)^{4} \equiv 6 \quad(\bmod 13)
$$

- When $p=17$,

$$
2^{20}+3^{20}+5^{20} \equiv 2^{4}+3^{4}+5^{4} \equiv 16+81+64 \equiv 161 \equiv 8 \quad(\bmod 17)
$$

Therefore $2^{20}+3^{20}+5^{20}$ isn't divisible by any odd prime less than 19 , so 19 is the smallest odd prime factor.
20. The main idea is to use a partial fraction decomposition. Note that

$$
\frac{1}{F_{n}}-\frac{1}{F_{n+2}}=\frac{F_{n+2}-F_{n}}{F_{n} \cdot F_{n+2}}=\frac{F_{n+1}}{F_{n} \cdot F_{n+2}}
$$

Therefore, dividing both sides by F_{n+1} gives

$$
\frac{1}{F_{n} F_{n+2}}=\frac{1}{F_{n} F_{n+1}}-\frac{1}{F_{n+1} F_{n+2}} .
$$

Now we can write

$$
\begin{aligned}
S & =\frac{1}{F_{3} F_{5}}+\frac{1}{F_{4} F_{6}}+\frac{1}{F_{5} F_{7}}+\cdots \\
& =\frac{1}{F_{3} F_{4}}-\frac{1}{F_{4} F_{5}}+\frac{1}{F_{4} F_{5}}-\frac{1}{F_{5} F_{6}}+\frac{1}{F_{5} F_{6}}-\frac{1}{F_{6} F_{7}}+\cdots \\
& =\frac{1}{F_{3} F_{4}} \\
& =\frac{1}{6}
\end{aligned}
$$

since all the other terms cancel in a telescoping sum. Therefore $420 S=70$.
21. Since Q is hard to deal with, we will construct the related but slightly different number

$$
R=\sum_{i=0}^{\infty} \frac{F_{i}}{100^{i+1}}=0.00010102030508132134559044 \ldots
$$

where we "squeeze" each Fibonacci number into two decimal spots, with carryover if necessary. This makes it so that our sum is much easier to evaluate. Note also that $R>Q$, or that $\frac{1}{R}<\frac{1}{Q}$.

To find this sum, we use a well-known telescoping technique. Defining $F_{-1}=1$:

$$
\begin{aligned}
100 R-R & =F_{0}+\sum_{i=1}^{\infty} \frac{F_{i}}{100^{i}}-\sum_{i=1}^{\infty} \frac{F_{i-1}}{100^{i}} \\
& =F_{0}+\sum_{i=1}^{\infty} \frac{F_{i-2}}{100^{i}} \\
& =F_{0}+\frac{F_{-1}}{100}+\sum_{i=0}^{\infty} \frac{F_{i}}{100^{i+2}} \\
& =\frac{1}{100}+\frac{1}{100} R .
\end{aligned}
$$

So

$$
9900 R=1+R \Longrightarrow R=\frac{1}{9899}
$$

Now, note that the first 12 digits of R and Q are the same, so $R-Q \leq 10^{-12}$. Thus,

$$
\frac{1}{Q}-\frac{1}{R}=\frac{R-Q}{Q R}<10^{-12} \cdot 10^{4} \cdot 10^{4}=10^{-4}
$$

since $Q, R>10^{-4}$. Since $\frac{1}{R}$ is an integer, the greatest integer less than or equal to $\frac{1}{Q}$ is $\frac{1}{R}=9899$.

MOAA 2019 Gunga Bowl Set 8

22. The key is to think about this problem in terms of coordinates. Let the center of C_{0} be the origin $(0,0,0,0,0)$, so its 32 vertices are $(\pm 1, \pm 1, \pm 1, \pm 1, \pm 1)$. All these are a distance of

$$
\sqrt{1^{2}+1^{2}+1^{2}+1^{2}+1^{2}}=\sqrt{5}
$$

from the origin, so the radius of S_{0} is $\sqrt{5}$. Therefore, the 32 vertices of C_{1} are $(\pm \sqrt{5}, \pm \sqrt{5}, \pm \sqrt{5}, \pm \sqrt{5}, \pm \sqrt{5})$, and the radius of S_{1} is 5 . Continuing this way, we get that the 32 vertices of C_{4} are $(\pm 25, \pm 25, \pm 25, \pm 25, \pm 25)$, so its side length is 50 .
23. Let's begin with a few lengths: $A D=D C=10, B D=5, A B=5 \sqrt{5}$. The area of $\triangle A B C$ is $\frac{1}{2} \cdot A D \cdot B C=75$. Thus $B E \cdot A C=150$, or $B E=\frac{15 \sqrt{2}}{2}$. Having exhausted most of our length options, it makes sense to now turn to angles. Since $B F E C$ is cyclic, $\angle B$ and $\angle F E C$ are supplementary. However, $\angle A E F$ and $\angle F E C$ are also supplementary, so $\angle B=\angle A E F$. Thus, by AA similarity, $\triangle A E F \sim \triangle A B C$. Similarly, $\triangle B F D \sim \triangle B C A$ and $\triangle C D E \sim \triangle C A B$. Therefore we can calculate the side lengths of $\triangle D E F$ by similar triangles.

Before we do that, however, we can make a few more crucial observations about $\triangle D E F$ and $\triangle U V W$. note that since $\angle B F D=\angle C$ and $\angle A F E=\angle C$, we know that $\angle D F E=180^{\circ}-2 \angle C=90^{\circ}$! Thus $\triangle D F E$ is a right triangle. By a similar logic, we deduce that $\angle D E F=180^{\circ}-2 \angle B$ and $\angle E D F=180^{\circ}-2 \angle A$. Then, notice that $\triangle U V F$ is an isosceles triangle, since $F U$ and $F V$ are equal tangents to the incircle. Thus $\angle F U V=\angle C$. Similarly, $\angle E U W=\angle B$. This then means that $\angle V U W=180^{\circ}-\angle B-\angle C=\angle A$! By a similar logic, $\angle U V W=\angle B$ and $\angle U W V=\angle C$, so $\triangle U V W \sim \triangle A B C$. It suffices to find the length of $U V$, since then we can calculate the area of $\triangle U V W$ by using the appropriate scale factor. In order to do that, notice that since $\triangle D E F$ is a right triangle with a right angle at $\angle F$, the lengths $F U$ and $F V$ are both equal to the inradius of $\triangle D E F$. To see this, let H be the incenter of $\triangle D E F$, and notice that $\angle F U H=\angle F V H=\angle U F V=90^{\circ}$. Thus, since $F U=F V, F U H V$ is a square and the conclusion follows. Since we can find the side lengths of $\triangle D E F$, we can find the inradius of $\triangle D E F$ and therefore the length of $U V$ in order to finish the problem.

Now that we know what we are doing, we can start the calculations. We first calculate $A E=\frac{3 \sqrt{10}}{2}$ by the Pythagorean Theorem on $\triangle A B E$. By similar triangles,

$$
\frac{A E}{E F}=\frac{A B}{B C} \Longrightarrow E F=A E \cdot \frac{B C}{A B}=\frac{5 \sqrt{2}}{2} \cdot \frac{15}{5 \sqrt{5}}=\frac{3 \sqrt{10}}{2}
$$

Similarly,

$$
\frac{B D}{D F}=\frac{A B}{A C} \Longrightarrow D F=B D \cdot \frac{A C}{A B}=5 \cdot \frac{10 \sqrt{2}}{5 \sqrt{5}}=2 \sqrt{10}
$$

Finally,

$$
\frac{C D}{D E}=\frac{A C}{A B} \Longrightarrow D E=C D \cdot \frac{A B}{A C}=10 \cdot \frac{5 \sqrt{5}}{10 \sqrt{2}}=\frac{5 \sqrt{10}}{2}
$$

(We can perform a sanity check right now that, indeed, $D F^{2}+E F^{2}=D E^{2}$.) The area of $\triangle D E F$ is $D F \cdot E F=15$. The inradius of a triangle with area K and semiperimeter s is $r=\frac{K}{s}$, so the inradius of $\triangle D E F$ is $\frac{15}{3 \sqrt{10}}=\frac{\sqrt{10}}{2}$. Finally, we can use the fact that $U V=\sqrt{2} F U=\sqrt{2} r$ to see that $U V=\sqrt{5}$. The scale factor between $\triangle U V W$ and $\triangle A B C$ is thus $\frac{U V}{A B}=\frac{\sqrt{5}}{5 \sqrt{5}}=\frac{1}{5}$. This means that the area of $\triangle U V W$ is

$$
75 \cdot\left(\frac{1}{5}\right)^{2}=3
$$

24. Suppose our polynomial is

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

where a_{i} are selected from the set $S=\{0,1, \ldots, 8\}$. We need that

$$
2019=P(3)=a_{0}+a_{1} 3+a_{2} 3^{2}+\cdots+a_{n} 3^{n}
$$

At this point, we can make a selection for the coefficients. We have a sum of $n+1$ terms: the first term can be chosen to be any element of S, while the second term can be chosen to be any element of $3 S$, and so on. We can describe this by a generating function:

$$
f(x)=\left(1+x+x^{2}+\cdots+x^{8}\right)\left(1+x^{3}+x^{6}+\cdots+x^{24}\right) \cdots
$$

The coefficient of the x^{2019} term of f tells us how many ways we can select the a_{i}. However, we can recognize each term of the product as a geometric series and write

$$
f(x)=\frac{x^{9}-1}{x-1} \cdot \frac{x^{27}-1}{x^{3}-1} \cdot \frac{x^{81}-1}{x^{9}-1} \cdots
$$

which telescopes into

$$
\frac{1}{(1-x)\left(1-x^{3}\right)}=\left(1+x+x^{2}+\cdots\right)\left(1+x^{3}+x^{6}+\cdots\right)
$$

Now note that for any selection of a multiple of three $3 a$ less than or equal to 2019 in the second term, we can find the corresponding $2019-3 a$ term in the first term. Therefore, the coefficient of the x^{2019} term is just the number of multiples of three at most 2019, which is 674 .

MOAA 2019 Gunga Bowl Set 9

25. We have that $A=20192019^{2} \cdot \pi$. The side length of a square with this area is

$$
s=\sqrt{A}=20192019 \cdot \sqrt{\pi} \approx 35789421.83
$$

Therefore, the answer is 35789421 . There are a few good ways to estimate this; one of the ways we found is to use a first-order Taylor series approximation of $f(x)=\sqrt{x}$ centered at $x=3.24$ to approximate the value of $\sqrt{\pi}$:

$$
\begin{aligned}
\sqrt{x} & \approx f(3.24)+f^{\prime}(3.24)(x-3.24)+\cdots \\
& =\sqrt{3.24}+\frac{1}{2 \cdot \sqrt{3.24}}(x-3.24)+\cdots \\
& =1.8+\frac{1}{3.6}(x-3.24)+\cdots
\end{aligned}
$$

for values of x around 3.24. Dropping the higher order terms and approximating $\pi \approx 3.14$, we find that $\sqrt{\pi} \approx 1.8-\frac{1}{36}$. We can choose to approximate 20192019 as 20190000 to make the calculations easier (this is off by about 0.01%). Then

$$
\begin{aligned}
20190000\left(1.8-\frac{1}{36}\right) & =2019\left(18000-\frac{10000}{36}\right) \\
& =2019\left(18000-\frac{2500}{9}\right) \\
& \approx 2019(18000-278) \\
& =2019(17722) \\
& =35780718
\end{aligned}
$$

This is an extremely good approximation of the actual answer (within 0.025%), and earns a solid 25 points. Note that other close-ish answers, such as approximating $\sqrt{\pi}$ as 1.77 , only earns 4 points.
26. This problem asks for the domination number of a 50×50 grid graph. It has been proven that for $m, n \geq 16$, the domination number of a $m \times n$ grid graph is exactly $\left\lfloor\frac{(m+2)(n+2)}{5}\right\rfloor-4$. Plugging in $m=n=50$ gives 536 .
27. It has been proven that the optimal packing density is $d=\frac{\pi^{4}}{2^{4} \cdot 4!} \approx 25.37 \%$, achieved by the E8 lattice. (This is essentially the most regular spherical packing in any dimension. Think hexagonal circle packing in 2 dimensions or hexagonally-layered sphere packing in 3 dimensions.) The desired answer is then $\left\lfloor 10^{8} \cdot d\right\rfloor=25366950$.

