MOAA 2019 Speed Round Solutions

1. Keeping in mind order of operations, we first perform the operation in parenthesis. Since $2-7=-5$, we get

$$
20 \times 19+20 \div(-5)
$$

Now we perform the multiplication and division operations, to get

$$
380+(-4)
$$

Finally, we add these two numbers to get

$$
380+(-4)=380-4=376
$$

2. The probability the second spinner matches the first is $\frac{1}{4}$, and the probability the third spinner matches the first is $\frac{1}{5}$. Multiplying these gives $p=\frac{1}{20}$, so the answer is $\frac{1}{p}=20$.
3. There are $\binom{8}{5}=56$ total ways to seat the eight children. When two boys sit on the end, there are $\binom{6}{3}=20$ ways to seat the six remaining children. Thus the probability that two boys sit on the end when the children are seated randomly is $\frac{20}{56}=\frac{5}{14}$, and our answer is 19 .
4. Suppose that, before his 10 home run streak, Jaron hit x home runs in y at-bats. Then by the conditions given, $\frac{x}{y}=0.3$ and $\frac{x+10}{y+10}=0.31$. Cross multiplying yields $x=0.3 y$ and $x+10=0.31 y+3.1$, and substituting the first equation into the second gives

$$
\begin{aligned}
0.3 y+10 & =0.31 y+3.1 \\
6.9 & =0.01 y \\
y & =690 .
\end{aligned}
$$

Thus $x=0.3 y=207$, and after hitting 10 home runs in a row, Jaron has now hit 217 home runs.
5. Note that we may telescope the sum by writing $\frac{1}{n(n+3)}=\frac{1}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)$. (In general, we can show that $\frac{1}{n(n+a)}=\frac{1}{a}\left(\frac{1}{n}-\frac{1}{n+a}\right)$.) Thus, the sum becomes

$$
\begin{aligned}
\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\cdots+\frac{1}{97 \cdot 100} & =\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\cdots+\frac{1}{97}-\frac{1}{100}\right) \\
& =\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right) \\
& =\frac{33}{100}
\end{aligned}
$$

The answer is thus 133 .
6. Let I be the area of the intersection between the square and triangle. Then, notice that

$$
|M-N|=|(M+I)-(N+I)|
$$

However, $M+I$ is the area of the square and $N+I$ is the area of the triangle, so we can just find the difference between these two areas.

The unit square clearly has area 1 . For the triangle, note that $O A=\frac{\sqrt{2}}{2}$. If G is the midpoint of $O E$, then $O A G$ is a $30-60-90$ triangle, so $O G=\frac{\sqrt{6}}{4}$ and $O E=\frac{\sqrt{6}}{2}$. Now since the area of an equilateral triangle with side length s is $\frac{\sqrt{3}}{4} s^{2}$, the area of $O E F$ is

$$
N+I=\frac{\sqrt{3}}{4} \cdot\left(\frac{\sqrt{6}}{2}\right)^{2}=\frac{3 \sqrt{3}}{8} .
$$

Therefore the difference between the two areas is

$$
1-\frac{\sqrt{27}}{8}=\frac{1}{8}(8-\sqrt{27})
$$

so the answer is $8+27=35$.
7. Let's do casework on the first digit. If the first digit is $1(\bmod 3)$, then the second digit must be equivalent to $2(\bmod 3)$ in order for the sum of the two digits to be $0(\bmod 3)$. Then the third digit must be $1(\bmod 3)$, and so on, so that the digit alternate between $1(\bmod 3)$ and $2(\bmod 3)$. Similarly, if the first digit is equivalent to $2(\bmod 3)$, then the digits of the number must alternate between 2 $(\bmod 3)$ and $1(\bmod 3)$. Since there are three digits that are $1(\bmod 3)(1,4,7)$ and three digits that are $2(\bmod 3)(2,5,8)$, there are 3 ways to pick each digit in each of these cases, meaning that there are a total of $2 \cdot 3^{7}=4374$ numbers starting with a digit that is either $1(\bmod 3)$ or $2(\bmod 3)$.

If the number starts with a digit that is $0(\bmod 3)$, then each digit must be equivalent to $0(\bmod 3)$ in order for adjacent digits to sum to a multiple of 3 . There are four digits that are $0(\bmod 3)(0,3$, 6,9 , but a number cannot start with 0 . Thus there are three choices for the leading digit, and four choices for each of the other digits. There are $3 \cdot 4^{6}=12288$ numbers in this case.

Adding our cases, the total number of 7 -digit numbers with adjacent digits summing to a multiple of 3 is $4374+12288=16662$.
8. Suppose first that $x=p^{e}$ is a prime power. Then $x^{x}=\left(p^{e}\right)^{p^{e}}=p^{e p^{e}}$. This number has $e p^{e}+1=703$ factors, meaning that $e p^{e}=702$. However, $702=2 \cdot 3^{3} \cdot 13$, so either $p=13$ or e is a multiple of 13 . If $p=13$ this forces $e=1$, which clearly does not satisfy the equation. Alternatively, if e is a multiple of 13 , then

$$
e p^{e}>2^{13}=8192>702
$$

so there are no solutions here either. Thus x has at least two distinct prime factors.

Since the number of factors of $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)$, each prime factor will contribute a factor to the final product, 703. Thus we factor $703=19 \cdot 37$. Since 703 has exactly two prime factors, x must have exactly two prime factors. Suppose that $x=p^{a} q^{b}$ for distinct primes p, q and positive integers a, b. Then $x^{x}=p^{a x} q^{b x}$. WLOG suppose that $a x+1=19$ and $b x+1=37$, or that $a x=18$ and $b x=36$. This forces x to be a factor of 18 with two distinct prime factors. The only possible candidates are 6 and 18. Testing 6 , we find that $6^{6}=2^{6} \cdot 3^{6}$ has 49 factors. Testing 18, we find that $18^{18}=2^{18} \cdot 3^{36}$ has 703 factors. Thus, our answer is 18 .
9. Let's first try some smaller cases for the numbers in place of 2019.

x	2^{x}	5^{x}	total number of digits
1	2	5	2
2	4	25	3
3	8	125	4
4	16	625	5
5	32	3125	6

Hmm... there seems to be a pattern developing. The total number of digits in 2^{x} and 5^{x} seems to be $x+1$.

Multiplying 2^{2019} and 5^{2019} gives 10^{2019}, which has 2020 digits. Now we have a pretty clear reason why the total number of digits should be 2020 . Write

$$
2^{2019}=a \cdot 10^{b} \text { and } 5^{2019}=c \cdot 10^{d}
$$

in scientific notation, with a and c between 1 and 10. 2^{2019} has $b+1$ digits and 5^{2019} has $d+1$ digits, so now we just need to find $b+d+2$. However,

$$
10^{2019}=2^{2019} \cdot 5^{2019}=a c \cdot 10^{b+d}
$$

Noting that $1<a, c<10$, in order the right hand side to be a power of 10 , we must have $a c=10$, so $10^{2019}=10 \cdot 10^{b+d}$, so $b+d=2018$. Our answer is in fact $b+d+2=2020$.
10. Consider the following diagram.

We can see that ω is the circle centered at M, the midpoint of $B C$, passing through D_{1} and D_{2}, two points where $D_{1} B C$ and $D_{2} B C$ are equilateral triangles. In the above figure, the circle is coming out of the page, and the below figure shows the same arrangement rotated 90 degrees about the axis $A M$.

Since $M C=5$ and $A C=13$, and $A C M$ is a right triangle, we know that $A M=12$. The radius of ω is

$$
D_{1} M=\sqrt{3} \cdot C M=5 \sqrt{3}
$$

Now we know that

$$
A E=\sqrt{A M^{2}-E M^{2}}=\sqrt{144-75}=\sqrt{69}
$$

Now if X is the intersection of $A M$ and $A E$, notice that since $\angle A X E=\angle A E M=90^{\circ}$, by AA similarity,

$$
\triangle A X E \sim \triangle A E M
$$

Therefore

$$
\frac{X E}{A E}=\frac{E M}{A M} \Longrightarrow X E=\frac{5 \sqrt{3} \cdot \sqrt{69}}{12}=\frac{5 \sqrt{23}}{4} .
$$

Then $E F=2 X E$, so

$$
E F^{2}=\left(\frac{5 \sqrt{23}}{2}\right)^{2}=\frac{575}{4},
$$

giving us an answer of $575+4=579$.

