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Optimization

Mathematical optimization is all about finding the maximum or minimum of a value under a given
set of conditions. Try your hand on several optimization problems below!

TO1. What is the maximum number of circles of radius 1 you can fit, without overlapping them,
in a circle of radius 3?

Proposed by: William Yue

Answer: 7

Solution: The answer is 7, achievable by the construction shown below, which is clearly
optimal.

TO2. The Den has two deals on chicken wings. The first deal is 4 chicken wings for 3 dollars,
and the second deal is 11 chicken wings for 8 dollars. If Jeremy has 18 dollars, what is
the largest number of chicken wings he can buy?

Proposed by: Nathan Xiong

Answer: 24

Solution: Suppose Jeremy uses the first deal a times and the second deal b times. Then,
he spends 3a+ 8b ≤ 18 dollars to get 4a+ 11b chicken wings. Let’s take cases on the value
of b:

• Case 1: b = 0.

Then, we need 3a ≤ 18, so a = 6 is the maximum. This gives 4 × 6 = 24 chicken
wings.

• Case 2: b = 1.

Then, we need 3a ≤ 10, so a = 3 is the maximum. This gives 4 × 3 + 11 × 1 = 23
chicken wings.



• Case 3: b = 2.

Then, we need 3a ≤ 2, so a = 0 is the maximum. This gives 11 × 2 = 22 chicken
wings.

Jeremy cannot use the third deal more than two times since he doesn’t have enough money.
Hence, the largest number of chicken wings Jeremy can buy is 24.

TO3. Consider the addition

O N E
+ T W O

F O U R

where different letters represent different nonzero digits. What is the smallest possible
value of the four-digit number FOUR?

Proposed by: Nathan Xiong

Answer: 1236

Solution: Since we are adding two three-digit numbers to get a four-digit number, we
know that F = 1. Now, if we wish to minimize FOUR, we want to take O = 2. Let’s see
if this is possible; the addition has become

2 N E
+ T W 2

1 2 U R

Since we know that T 6= 0, in order for the hundreds digits to match we need T = 9 and
the sum N + W to carry over an extra 1. In addition, to continue to minimize FOUR we
want U = 3. Adding in this information gives

2 N E
+ 9 W 2

1 2 3 R

It now suffices to find the minimum possible value for R. Since E 6= 9 and if E = 8 then
R = 0 which isn’t allowed, we know that E + 2 = R. Since the digits 1, 2, 3 are already
used, this means that E = 4 and R = 6 is the smallest possibility. We can confirm that
this indeed works if we take N = 5 and W = 8, for example, resulting in the final addition
of

2 5 4
+ 9 8 2

1 2 3 6

Therefore, 1236 is the minimum possible value for FOUR.

TO4. Over all real numbers x, let k be the minimum possible value of the expression√
x2 + 9 +

√
x2 − 6x+ 45.

Determine k2.

Proposed by: Jeffrey Shi

Answer: 90

Solution: The key is to rewrite the expression by completing the square:√
x2 + 9 +

√
x2 − 6x+ 45 =

√
x2 + 9 +

»
(3− x)2 + 36.



Now, we can interpret this geometrically using the Pythagorean theorem! For any real
number x, the first quantity represents the distance from the point (0, 0) to the point
(x, 3), while the second quantity represents the distance from the point (x, 3) to the point
(3, 9), as shown below:

O

T

X

F

3

3− x

x

6

Therefore, the expression in the problem is equal to the length of OX plus the length of
XT . By the triangle inequality, this is minimized when X lies on OT , and our answer is
just the length of OT . The Pythagorean theorem tells us that this length is

k =
√

32 + 92 =
√

90,

so k2 = 90.

TO5. For a real number x, the minimum value of the expression

2x2 + x− 3

x2 − 2x+ 3

can be written in the form a−
√
b

c , where a, b, c are positive integers such that b is not
divisible by the square of any prime. Find a+ b+ c.

Proposed by: Jeffrey Shi

Answer: 74

Solution: Let the expression equal k. We can then rearrange to find

2x2 + x− 3 = k(x2 − 2x+ 3)

(2− k)x2 − (2k + 1)x− 3k − 3 = 0

We know that since x is real, the discriminant of this quadratic must be greater than or
equal to zero.

(2k + 1)2 − 4(2− k)(−3k − 3) ≥ 0

−8k2 + 16k + 25 ≥ 0

8k2 − 16k − 25 ≤ 0.



Remember that we are trying to minimize k, and from this quadratic inequality we find

4−
√

66

4
≤ k ≤ 4 +

√
66

4
.

Thus the minimum value of k = 4−
√
66

4 , and our answer is 74. Note that this value of k is
clearly achievable since the resulting quadratic equation has real roots.

Errata: There was a minor error in the problem statement, which stated that a and c
were relatively prime.



Relay

Each problem in this section will depend on the previous one! The values A, B, C, and D refer to
the answers to problems 1, 2, 3, and 4, respectively.

TR1. The number 2020 has three different prime factors. What is their sum?

Proposed by: William Yue

Answer: 108

Solution: We can factor 2020 = 22 × 5× 101. The three different prime factors are 2, 5,
and 101, and their sum is 2 + 5 + 101 = 108.

TR2. Let A be the answer to the previous problem. Suppose ABC is a triangle with AB = 81,
BC = A, and ∠ABC = 90◦. Let D be the midpoint of BC. The perimeter of 4CAD
can be written as x + y

√
z, where x, y, and z are positive integers and z is not divisible

by the square of any prime. What is x+ y?

Proposed by: Nathan Xiong

Answer: 216

Solution: Since A = 108, we know that BC = 108. Now, we recognize that 108 = 27× 4
and 81 = 27×3, so ABC is a 3−4−5 right triangle, with hypotenuse 27×5 = 135. Let’s
solve the scaled down version of the problem, where AB = 3, BC = 4, CA = 5, then scale
our final answer back up by 27.

B

A

CD

3

2 2

5

To compute the perimeter of 4CAD, we need to compute AD using the Pythagorean
theorem: AD =

√
32 + 22 =

√
13. Thus, the perimeter is 7 +

√
13. Scaling back up gives

189 + 27
√

13, so the answer is x+ y = 189 + 27 = 216.

TR3. Let B the answer to the previous problem. What is the unique real value of k such that
the parabola y = Bx2 + k and the line y = kx+ B are tangent?

Proposed by: Andrew Wen

Answer: 432

Solution: We wish to solve the equation Bx2 + k = kx+B and only find one solution, as
this would imply that the line is tangent to the parabola. This means that the quadratic
Bx2−kx+(k−B) must have a double root, which means that the discriminant ∆ = b2−4ac
must be zero:

0 = ∆ = k2 − 4B(k − B) = k2 − 4Bk + 4B2 = (k − 2B)2.

Hence, k = 2B = 2× 216 = 432.



TR4. Let C be the answer to the previous problem. How many ordered triples of positive integers
(a, b, c) are there such that gcd(a, b) = gcd(b, c) = 1 and abc = C?
Proposed by: Andrew Wen

Answer: 30

Solution: Prime factorize C = 432 = 24 × 33. Now, we can write a = 2a13a2 , b = 2b13b2 ,
and c = 2c13c2 , where a1+b1+c1 = 4 and a2+b2+c2 = 3. However, by the gcd condition,
we also know that

min{a1, b1} = min{a2, b2} = min{b1, c1} = min{b2, c2} = 0.

Hence,

• For the triple (a1, b1, c1), we know that either b1 = 0 or a1 = c1 = 0. In the first
case, we are left with a1 + c1 = 4, which gives 5 possibilities, while in the second
case, we are left with b1 = 4, which is 1 possibility. Thus, there are 6 possibilities for
the triple (a1, b1, c1).

• For the triple (a2, b2, c2), we also know that either b2 = 0 or a2 = c2 = 0. In the
first case, we are left with a1 + c1 = 3, which gives 4 possibilities, while in the second
case, we are left with b2 = 3, which is 1 possibility. Thus, there are 5 possibilities for
the triple (a2, b2, c2).

In total, this gives 6× 5 = 30 possibilities for (a, b, c).

TR5. Let D be the answer to the previous problem. Let ABCD be a square with side length
D and circumcircle ω. Denote points C ′ and D′ as the reflections over line AB of C and
D respectively. Let P and Q be the points on ω, with A and P on opposite sides of line
BC and B and Q on opposite sides of line AD, such that lines C ′P and D′Q are both
tangent to ω. If the lines AP and BQ intersect at T , what is the area of 4CDT?

Proposed by: Andrew Wen

Answer: 375

Solution: Let O be the center of ω. Note that ∠OAC ′ = ∠OAB+∠BAC ′ = 45◦+45◦ =
90◦, so C ′A is tangent to ω. This also implies that AP ⊥ OC ′. Let M and N be the
feet from O to C ′D′ and AP respectively. Since ∠TNC ′ = ∠TMC ′ = 90◦, we know that
TNC ′M is cyclic.

O

A B

CD

C ′D′

PQ T

M

N

Therefore, we can apply power of a point at O: ON · OC ′ = OT · OM . However, since
4ONP ∼ 4OPC ′ because ∠NOP = ∠POC ′ and ∠ONP = 90◦ = ∠OPC ′, we know



that ON
OP = OP

OC′ =⇒ ON · OC ′ = OP 2. Now we can finish the problem. Since D = 30,

we know that OM = 15 + 30 = 45 and OP = OA = 15
√

2. Therefore,

45 ·OT = OM ·OT = OP 2 = 450 =⇒ OT = 10.

Therefore, the area of 4CDT is 1
2 × 30× (15 + 10) = 375.



to Bash or not to Bash...

In math competitions, we call a problem “bashy” if it involves a lot of routine yet annoying com-
putations and/or casework. The following problems all seem bashy at first glance, but we promise
they all have nicer solutions that don’t require too much computation.

Do you have the ingenuity to find the fast and clever approaches? Or would you prefer to spend
the extra time and effort to simply bash out the answer? To bash or not to bash, that is your
question to answer.

TB1. Find the perimeter of the figure below, where all angles are right angles.

4

4

1

1

1

1

1

1

1
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Proposed by: Nathan Xiong

Answer: 16

Solution: The trick is to note that the total horizontal length is 2×4 = 8, and the total
vertical length is also 2× 4 = 8, so the perimeter is just 8 + 8 = 16.

TB2. Evaluate
1× 5 + 2× 8 + 3× 13 + 5× 21 + 8× 34 + 13× 55.

Proposed by: Nathan Xiong

Answer: 1152

Solution: While this problem looks like a large computation, there’s actually a slick
solution using difference of squares. We actually apply this relation in the reverse direction
to find that

1× 5 + 2× 8 + 3× 13 + 5× 21 + 8× 34 + 13× 55

= (3− 2)(3 + 2) + (5− 3)(5 + 3) + (8− 5)(8 + 5)

+ (13− 8)(13 + 8) + (21− 13)(21 + 13) + (34− 21)(34 + 21)

= (32 − 22) + (52 − 32) + (82 − 52) + (132 − 82) + (212 − 132) + (342 − 212)

= 342 − 22

= 1152.

TB3. Jeff and Geoff each choose a random number from the set {1, 2, . . . , 100}. Let Jeff’s
number be a and Geoff’s number be b. Given that a 6= b, the probability that ab+a+ b is
odd can be expressed as m

n , where m and n are relatively prime positive integers. What
is m+ n?

Proposed by: Andrew Wen



Answer: 347

Solution: The key is to recognize that ab + a + b = (a + 1)(b + 1) − 1. Let’s employ
complementary counting and instead compute the probability that this expression is even.
This is equal to the probability that (a + 1)(b + 1) is odd, which only occurs when both
factors a+1 and b+1 are odd. The probability of this occurring is equal to the probability
that both a and b are even, which occurs with chance 50

100 · 4999 = 49
198 . Therefore, our desired

probability is 1− 49
198 = 149

198 , which gives the answer of 149 + 198 = 347.

TB4. Find the number of positive integers n less than 100 that satisfy the equation

n = b√nc · d√ne.

Note: bxc denotes the greatest integer less than or equal to x and dxe denotes the least
integer greater than or equal to x.

Proposed by: Nathan Xiong

Answer: 18

Solution: Let b√nc = k. Then,

• If n = k2 is a perfect square, then d√ne = k as well, and the equation is satisfied.

• If (k + 1)2 > n > k2 is not a perfect square, then d√ne = k + 1, so the only valid
value of n for the equation to be satisfied is k(k + 1).

Therefore, we need to find the number of positive integers n less than 100 that are of the
form k2 or k(k+ 1). There are 9 perfect squares less than 100, and each of them also has
an associated k(k + 1) term, resulting in 18 total possibilities.

TB5. Arnav writes every positive integer factor of 20202 exactly once on a blackboard. Every
minute, he chooses a number on the blackboard uniformly at random, and he erases it
as well as all of its factors. The expected amount of minutes that Arnav takes to erase
every number on the board can be expressed in the form m

n for relatively prime positive
integers m and n. Compute m+ n.

Proposed by: William Yue

Answer: 18737

Solution: Call a number selected if it is a number which Arnav picks to erase, along with
its factors (in particular, not all erased numbers are selected). Now, the key is to notice
that the number of minutes it takes Arnav to erase all the numbers is equal to the total
number of selected numbers.

If F is the set of factors of 20202 = 24 ·52 ·1012, then we can define indicator variables Xi,
for each i ∈ F , to be 1 if the number is selected and 0 otherwise. Then, we are seeking
the quantity

E

[∑
i∈F

Xi

]
=
∑
i∈F

E[Xi]

by Linearity of Expectation. However, note that for any individual factor i of 20202, the
probability that it is selected is equal to 1 over its number of multiples which are also in



F (this is because i is erased whenever it or one of its other multiples is selected, and each
of these events occurs with equal probability). Thus, we can write this sum as

4∑
a=0

2∑
b=0

2∑
c=0

E[X24−a·52−b·1012−c ] =
4∑

a=0

2∑
b=0

2∑
c=0

1

(a+ 1)(b+ 1)(c+ 1)

=

(
4∑

a=0

1

a+ 1

)(
2∑

b=0

1

b+ 1

)(
2∑

c=0

1

c+ 1

)

=

Å
1 +

1

2
+

1

3
+

1

4
+

1

5

ãÅ
1 +

1

2
+

1

3

ã2
=

16577

2160
.

The answer is 16577 + 2160 = 18737.



Functions

The following problems all involve functions. A function can be thought of as a process that takes
in some input and spits out some output. For example, f(x) = x2 − 1 is a simple function which
takes in 3 and spits out f(3) = 32 − 1 = 8.

TF1. We define the prime-counting function π(n) as the number of primes that are less than
or equal to n. For example, π(8) = 4 since there are 4 primes less than or equal to 8,
namely, 2, 3, 5, and 7. What is the sum of all positive integers n with π(n) = 6?

Note: The π used here is unrelated to the infinite decimal 3.1415 . . .

Proposed by: Nathan Xiong

Answer: 58

Solution: We need to find all positive integers n such that there are exactly 6 prime
numbers less than or equal to n. The first seven primes are 2, 3, 5, 7, 11, 13, 17, so the first
number n such that π(n) = 6 is n = 13, and the first number for which π(n) = 7 is n = 17.
Therefore, the only numbers n for which π(n) = 6 are 13, 14, 15, and 16. The answer is
58.

TF2. Consider the function f(x) = 2020− x. Find f(f(f(f(f(1))))).

Proposed by: Nathan Xiong

Answer: 2019

Solution: The key is to notice that f(f(x)) = 2019 − (2019 − x) = x. Therefore,
f(f(f(f(f(1))))) = f(f(f(1))) = f(1) = 2019.

TF3. Consider the polynomial P (x) such that for any positive real number x, P (x) equals the
numerical sum of the volume and surface area of regular tetrahedron with side length x.
If r is the only nonzero real root of this polynomial, determine r2.

Proposed by: William Yue

Answer: 216

Solution: Since the volume of a regular tetrahedron is proportional to the cube of its
side length, if V is the volume of a regular unit tetrahedron (side length 1), then the
volume of a regular tetrahedron with side length x is V x3. Similarly, since the surface
area of a regular tetrahedron is proportional the square of its side length, if A is the
surface area of a regular unit tetrahedron, then the surface area of a regular tetrahedron
with side length x is Ax2. Therefore, the relevant polynomial is

P (x) = V x3 +Ax2 = x2(V x+A),

whose only nonzero root is at r = −A
V . We calculate A and V separately.

• First, we find the surface area of a regular unit tetrahedron. This area is composed

of four equilateral triangles with side length 1. The area of each triangle is
√
3
4 × 12,

so the surface area is A = 4×
√
3
4 =

√
3.

• Next, we find the volume of a regular unit tetrahedron. Label its four vertices A,
B, C, and D. Drop the altitude from a vertex A to the center M of the opposite
equilateral triangle face BCD. We apply the Pythagorean Theorem on right triangle

AMB. We know that AB = 1 and MB = 2
3 ·
√
3
2 =

√
3
3 . Hence,

AM =
√
AB2 −MB2 =

…
1− 1

3
=

…
2

3
=

√
6

3
.



Therefore, the volume is

V =
1

3
·
√

3

4
·
√

6

3
=

√
2

12
.

Putting these two together, we find that the only nonzero root of P (x) is r = −
√
3√

2/12
=

−12
√
3√

2
. The answer is r2 = 144·3

2 = 216.

TF4. Let P (x) = a5x
5 + a4x

4 + · · ·+ a1x+ a0 be the unique polynomial of degree 5 satisfying

P (0) = 1,

P (1) = 2,

P (2) = 4,

P (3) = 8,

P (4) = 16,

P (5) = 32.

Given that there is a unique positive integer n such that P (n) = 1024, find n.

Proposed by: Nathan Xiong

Answer: 11

Solution: The trick is to define the polynomialsÇ
x

k

å
=
x(x− 1)(x− 2) · · · (x− k + 1)

k!

as the standard binomial coefficient functions with extended domains to all reals. Note
that when x is a non-negative integer less than k,

(x
k

)
= 0. Thus,

P (x) =

Ç
x

0

å
+

Ç
x

1

å
+

Ç
x

2

å
+

Ç
x

3

å
+

Ç
x

4

å
+

Ç
x

5

å
satisfies all the conditions in the problem and hence is our unique polynomial. Finally,
using the fact that

(n
k

)
=
( n
n−k
)
, check that

P (11) =

Ç
11

0

å
+

Ç
11

1

å
+

Ç
11

2

å
+

Ç
11

3

å
+

Ç
11

4

å
+

Ç
11

5

å
=

1

2

11∑
i=0

Ç
11

i

å
= 210 = 1024.

So, the unique value of n such that P (n) = 1024 is n = 11.

TF5. Determine the number of bijections f on the set {1, 2, . . . , 8} satisfying

|2f(i)− 2i− 1| ≤ 3,

for all i = 1, 2, . . . , 8.

Note: A bijection on a finite set X is a function from X to itself such that for any a, b ∈ X
with a 6= b, then f(a) 6= f(b).

Proposed by: Andrew Wen

Answer: 81



Solution: First, we decipher what the condition means:

|2f(i)− 2i− 1| ≤ 3 =⇒ −2 ≤ 2(f(i)− i) ≤ 4 =⇒ −1 ≤ f(i)− i ≤ 2.

We will solve the problem using recursion. Let an denote the number of bijections on
{1, 2, . . . , n} satisfying the problem’s condition. One can check that a1 = 1, a2 = 2, and
a3 = 4.

We now find an for general n. Since −1 ≤ f(n)−n ≤ 2, there are only two possible values
for f(n).

• Case 1: f(n) = n.

There are clearly an−1 ways to determine the other n− 1 values.

• Case 2: f(n) = n− 1.

There are two possible values 1 ≤ i ≤ n − 1 such that f(i) = n. The first value is
i = n− 1. In that case, note that n and n− 1 are swapped by the bijection, so there
are an−2 ways to determine the other n− 2 values. The second value is i = n− 2. In
that case, from the bound −1 ≤ f(n− 1)− (n− 1) ≤ 2, we know that f(n− 1) must
be n− 2. Hence, our bijection cycles between n, n− 1, and n− 2, so there are an−3
ways to determine the other n− 3 values.

Putting these two cases together, we have

an = an−1 + an−2 + an−3,

for all n ≥ 4.

Finally, we compute a4 = 7, a5 = 13, a6 = 24, a7 = 44, and a8 = 81, as desired.


