MOAA 2021 Speed Round Solutions

Math Open at Andover

October 16, 2021

S1. What is $2021+20+21+2+0+2+1$?
Proposed by: Nathan Xiong
Answer: 2067
Solution: A quick sum yields

$$
2021+20+21+2+0+2+1=2021+41+5=2067
$$

S2. Compute the area of the resulting shape, drawn in red above.

Proposed by: Nathan Xiong
Answer: 50
Solution: We can divide the shape into four quadrants, as shown below.

Notice that the top-right and bottom-left quadrants each contain a square with side length 4, while the top-left and bottom-right quadrants each contain a square with side length 3 . Summing the area across all four quadrants yields an answer of $16+16+9+9=50$.

S3. Find the number of ordered pairs (x, y), where x and y are both integers between 1 and 9 , inclusive, such that the product $x \times y$ ends in the digit 5 .
Proposed by: Andrew Wen
Answer: 9
Solution: The desired outcome happens if and only if one of x, y is 5 , and the other is odd. If $x=5$, there are 5 options for $y: y=1,3,5,7,9$. Similarly, if $y=5$, there are 5 options for x. However, in these two cases, the pair $(x, y)=(5,5)$ is counted in both. Hence, the answer is $5+5-1=9$.

S4. Let a, b, and c be real numbers such that $0 \leq a, b, c \leq 5$ and $2 a+b+c=10$. Over all possible values of a, b, and c, determine the maximum possible value of $a+2 b+3 c$.

Proposed by: Andrew Wen
Answer: 25
Solution: Note that

$$
a+2 b+3 c=(2 a+b+c)+(-a+b+2 c)=10+(-a+b+2 c) .
$$

In order to maximize this expression, we need to maximize b and c but minimize a. The optimal way to do this is to let $a=0$ and $b=c=5$, in which case the answer is $0+10+15=25$.

S5. There are 12 students in Mr. DoBa's math class. On the final exam, the average score of the top 3 students was 8 more than the average score of the other students, and the average score of the entire class was 85 . Compute the average score of the top 3 students.

Proposed by: Yifan Kang

Answer: 91
Solution: Since the average score of the entire class is 85 , the sum of all scores in the class is $85 \cdot 12=1020$. Let x be the average score of the top 3 students, so the sum of their scores is $3 x$. The average score of the other 9 students is $x-8$, so the sum of their scores is $9(x-8)$. Therefore,

$$
3 x+9(x-8)=1020
$$

Solving for x yields $x=91$.
S6. Suppose (a, b) is an ordered pair of integers such that the three numbers a, b, and $a b$ form an arithmetic progression, in that order. Find the sum of all possible values of a.

Proposed by: Nathan Xiong
Answer: 8
Solution: Since a, b, and $a b$ form an arithmetic progression, we have $a+a b=2 b$. Applying Simon's Favorite Factoring Trick, we have

$$
a b+a-2 b-2=-2 \Longrightarrow(a-2)(b+1)=-2 .
$$

There are four possibilities to check.

- $a-2=-2 \Longrightarrow a=0$. Then, $b=0$, which works.
- $a-2=-1 \Longrightarrow a=1$. Then, $b=1$, which works.
- $a-2=1 \Longrightarrow a=3$. Then, $b=-3$, which works.
- $a-2=2 \Longrightarrow a=4$. Then, $b=-2$, which works.

The answer is $0+1+3+4=8$.
S7. If positive real numbers x, y, z satisfy the following system of equations, compute $x+y+z$.

$$
\begin{aligned}
& x y+y z=30 \\
& y z+z x=36 \\
& z x+x y=42
\end{aligned}
$$

Proposed by: Nathan Xiong
Answer: 13
Solution: Summing all three equations gives

$$
2(x y+y z+z x)=108 \Longrightarrow x y+y z+z x=54
$$

Now, we can subtract each other three equations from this sum to get

$$
\left\{\begin{array}{l}
z x=(x y+y z+z x)-(x y+y z)=54-30=24 \\
x y=(x y+y z+z x)-(y z+z x)=54-36=18 \\
y z=(x y+y z+z x)-(z x+x y)=54-42=12
\end{array}\right.
$$

Now, we can multiply these three equations to get

$$
x^{2} y^{2} z^{2}=24 \cdot 18 \cdot 12 \Longrightarrow x y z=\sqrt{24 \cdot 18 \cdot 12}=72
$$

Dividing these from our previous products gives

$$
\left\{\begin{array}{l}
y=\frac{x y z}{z x}=\frac{72}{24}=3, \\
z=\frac{x y z}{x y}=\frac{72}{18}=4, \\
x=\frac{x y z}{y z}=\frac{72}{12}=6 .
\end{array}\right.
$$

Therefore, $x+y+z=6+3+4=13$.
S8. Andrew chooses three (not necessarily distinct) integers a, b, and c independently and uniformly at random from $\{1,2,3,4,5,6,7\}$. Let p be the probability that $a b c(a+b+c)$ is divisible by 4 . If p can be written as $\frac{m}{n}$ for relatively prime positive integers m and n, then compute $m+n$.
Proposed by: Andrew Wen
Answer: 622
Solution: If at least two of a, b, c are even, then $a b c$ is divisible by 4 , so $a b c(a+b+c)$ is also divisible by 4. Further, if one of a, b, c is even and the other two are odd, then $a+b+c$ is even, so $a b c(a+b+c)$ is divisible by 4. The only case when $a b c(a+b+c)$ is not divisible by 4 is when a, b, c are all odd. The probability that this occurs is $\left(\frac{4}{7}\right)^{3}$. Thus, the desired probability is $1-\left(\frac{4}{7}\right)^{3}=\frac{279}{343}$, and the answer is $279+343=622$.

S9. Triangle $\triangle A B C$ has $\angle A=90^{\circ}$ with $B C=12$. Square $B C D E$ is drawn such that A is in its interior. The line through A tangent to the circumcircle of $\triangle A B C$ intersects $C D$ and $B E$ at P and Q, respectively. If $P A=4 \cdot Q A$, and the area of $\triangle A B C$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers m and n, then compute $m+n$.
Proposed by: Andy Xu
Answer: 149
Solution: Let $X=P Q \cap B C$. Since $B Q \| P C$, we have $\triangle X B Q \sim \triangle X C P$. Let $Q A=x$ and $A P=4 x$. Then $B Q=A Q=x$ and $P A=P C=4 x$. Thus

$$
\frac{X B}{X C}=\frac{B Q}{C P}=\frac{1}{4}
$$

so $X B=4$. Similarly

$$
\frac{X Q}{X P}=\frac{B Q}{C P}=\frac{1}{4}
$$

so $X Q=\frac{5 x}{3}$.

Applying the Pythagorean Theorem on $\triangle Q B X$ yields $x=3$. Next note that $A P C O$ is a cyclic quadrilateral because $A O \perp P Q$ and $O C \perp P C$, so $\angle A C B=\angle A P O$. Similarly, $\angle A B C=\angle A Q O$. Therefore $\triangle O Q P \sim \triangle A B C$. We have $Q O=3 \sqrt{5}$ and $P O=6 \sqrt{5}$, so $A B=\frac{12}{\sqrt{5}}$ and $A C=\frac{24}{\sqrt{5}}$, so $[A B C]=\frac{144}{5}$, giving an answer of $144+5=149$.

S10. Let $A B C D$ be a unit square in the plane. Points X and Y are chosen independently and uniformly at random on the perimeter of $A B C D$. If the expected value of the area of triangle $\triangle A X Y$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers m and n, compute $m+n$.

Proposed by: Nathan Xiong
Answer: 113
Solution: We perform casework on what type of configuration we have for which sides X and Y lie on. In total, there are six possible configurations for which sides X and Y lie on, up to symmetry, as shown below. Note that we will assume there are $4^{2}=16$ total possibilities for the sides that X and Y lie on.

- Top left configuration: note that this can occur in 2 ways (on side $A B$ or on side $A D$). In either case, the area of $\triangle A X Y$ is always 0 .
- Bottom left configuration: note that this can occur also in 2 ways. The expected value of the length of $X Y$ is $1 / 3$, since in expectation X and Y split $B C$ into three equal pieces. Therefore, the expected area of $\triangle A X Y$ in this case is $\frac{1}{6}$.
For the next four configurations, there's a pretty clean way to argue. First note that the two middle configurations can occur in 4 ways each (can swap X and Y, as well as reflect across $A C$ diagonal), while the two right configurations can only occur in 2 ways each (can only swap X and Y).

Now, note that in any case, if you fix Y at any point on its side, and move X along the side it is fixed to, the area of $\triangle A X Y$ will be a linear function in where X is. Therefore, in expectation, the area of $\triangle A X Y$ for any given fixed Y will be when X is at the midpoint of its side. Repeat the argument for a fixed X to show that Y must also be at its midpoint. Therefore, the four remaining expected value of areas are

- Top middle configuration: 4 ways, with expected area $\frac{1}{8}$.
- Bottom middle configuration: 4 ways, with expected area $\frac{1}{4}$.
- Top right configuration: 2 ways, with expected area $\frac{1}{8}$.
- Bottom right configuration: 2 ways, with expected area $\frac{3}{8}$.

We can summarize all the information we have in a table:

Side	$A B$	$B C$	$C D$	$D A$
$A B$	0	$1 / 8$	$1 / 4$	$1 / 8$
$B C$	$1 / 8$	$1 / 6$	$3 / 8$	$1 / 4$
$C D$	$1 / 4$	$3 / 8$	$1 / 6$	$1 / 8$
$D A$	$1 / 8$	$1 / 4$	$1 / 8$	0

Summing these all up and dividing by 16 gives

$$
\frac{2 \cdot 0+2 \cdot \frac{1}{6}+4 \cdot \frac{1}{8}+4 \cdot \frac{1}{4}+2 \cdot \frac{1}{8}+2 \cdot \frac{3}{8}}{16}=\frac{17}{96},
$$

so the answer is $17+96=113$.

