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T1. Consider the 5 by 5 equilateral triangular grid as shown:

How many equilateral triangles are there with sides along the gridlines?

Proposed by: Andy Xu

Answer: 48

Solution: Casework count:

• 1 by 1: there are 15 upright, 10 upside down for a total of 25.

• 2 by 2: there are 10 upright, 3 upside down for a total of 13.

• 3 by 3: there are 6 upright, none upside down for a total of 6.

• 4 by 4: there are 3 upright, none upside down for a total of 3.

• 5 by 5: there is 1 upright, none upside down for a total of 1.

Summing them all yields 25 + 13 + 6 + 3 + 1 = 48 .

T2. Jeff draws two intersecting segments AB = 10 and CD = 7 on a plane. Determine
the maximum possible area of quadrilateral ACBD.

Proposed by: Andrew Wen

Answer: 35

Solution: Note

[ACBD] = [CAD] + [CBD]

=
1

2
· [7δ(A,CD)] +

1

2
· [7δ(B,CD)]

=
7

2
[δ(A,CD) + δ(B,CD)]

where δ(X, ℓ) denotes distance from point X to line ℓ. The quantity in parentheses is
at most the length of AB, achieved when AB ⊥ CD, hence [ACBD] ≤ 7

2 ·10 = 35 .
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T3. The area of the figure enclosed by the x-axis, y-axis, and line 7x+ 8y = 15 can be
expressed as m

n where m and n are relatively prime positive integers. Find m+ n.

Proposed by: Andrew Wen

Answer: 337

Solution: This is really just a right triangle with vertices at the origin and the
intercepts of 7x+ 8y = 15. By setting x and y to be 0, one at a time, we find that
the x intercept is 15

7 and the y intercept is 15
8 , so the area is 1

2 · 15
7 · 15

8 = 225
112 for a

final answer of 225 + 112 = 337 .

T4. Andy flips three fair coins, and if there are any tails, he then flips all coins that
landed tails each one more time. The probability that all coins are now heads
can be expressed as m

n where m and n are relatively prime positive integers. Find
m+ n.

Proposed by: Andrew Wen

Answer: 91

Solution: We view each coin independently; it either is heads on its first flip with
a chance of 1

2 , or it can redeem itself on the second flip with a chance of 1
2 · 1

2 = 1
4

since it must have been tails on the first flip (to even get a second flip at all) and
heads on the second.

Hence, each coin has a 1
2 +

1
4 = 3

4 chance of being heads after two iterations, so our

final probability is 3
4 · 3

4 · 3
4 = 27

64 for a final answer of 27 + 64 = 91 .

T5. Find the smallest positive integer that is equal to the sum of the product of its
digits and the sum of its digits.

Proposed by: Andrew Wen

Answer: 19

Solution: The number is at least two digits because for a single digit number n,
the quantity in question is 2n > n.

For a two digit number n = 10a+ b, note that we want

n = 10a+ b = ab+ a+ b =⇒ 9a = ab

which either gives a = 0, impossible, or b = 9. There are no restrictions on a, so
the minimum answer is 19 . Indeed, check 19 = 1 · 9 + 9 + 1.

T6. Define a positive integer n to be almost-cubic if it becomes a perfect cube upon
concatenating the digit 5. For example, 12 is almost-cubic because 125 = 53. Find
the remainder when the sum of all almost-cubic n < 108 is divided by 1000.

Proposed by: Andy Xu

Answer: 950

Solution: If x is almost-cubic, then 10x + 5, which is the value formed upon
concatenating a 5 can be written in the form (10n− 5)3 for some positive integer n.
Hence, we are really just looking

N∑
i=1

(10i− 5)3 − 5

10

where N is the greatest value for which (10N−5)3−5
10 < 108 =⇒ (10N−5) < 1000+ϵ

so N = 100.
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Hence, our sum is

100∑
i=1

(10i− 5)3 − 5

10
=

100∑
i=1

(100i3 − 150i2 + 75i− 13)

which upon taking mod 1000, becomes

−150

[
100 · 101 · 201

6

]
+ 75

[
100 · 101

2

]
− 1300 ≡ −500 + 750− 300 (mod 1000)

≡ 950 (mod 1000)

as desired.

T7. A point P is chosen uniformly at random in the interior of triangle ABC with side
lengths AB = 5, BC = 12, CA = 13. The probability that a circle with radius 1

3
centered at P does not intersect the perimeter of ABC can be written as m

n where
m,n are relatively prime positive integers. Find m+ n.

Proposed by: Andrew Wen

Answer: 61

Solution: The locus of the centers is the set of all points at least 1
3 away from

the perimeter of ABC. This is a triangle, say A′B′C ′ (labeled by AB ∥ A′B′, etc).
Note that A′ is equidistant (specifically having distance of 1

3) from AB and AC,
hence AA′ is the ∠A bisector. Similarly, BB′ and CC ′ are ∠B and ∠C bisectors, so
AA′, BB′, CC ′ concur at incenter I. Since A′B′C ′ and ABC have pairwise parallel
sides, there is a homothety (or just dilation) at I shrinking ABC to A′B′C ′.

The scale factor is simply

δ(I, A′B′)

δ(I, AB)
=

r′

r
=

r − 1
3

r

where I is the incenter of ABC, δ(X, ℓ) is the distance from point X to line ℓ, and
r, r′ are the inradii of ABC and A′B′C ′ respectively. Note that by calculating the
area of ABC twice, we have (5 + 12 + 13)r = 5 · 12 =⇒ r = 2 so scale factor is 5

6 .

Therefore, the scale factor between areas is
(
5
6

)2
= 25

36 for an answer of 25+36 = 61 .

T8. Freddy the frog is playing a game in a circular pond with six lilypads around its
perimeter numbered clockwise from 1 to 6 (so that pad 1 is adjacent to pad 6). He
starts at pad 1, and when he is on pad i, he may jump to one of its two adjacent
pads, or any pad labeled with j for which j − i is even. How many jump sequences
enable Freddy to hop to each pad exactly once?

Proposed by: Andy Xu

Answer: 40

Solution: Note that from any lilypad, each frog can literally make any jump
except to the pad across from it. We are essentially looking for a permutation
starting with 1 without the subsequences (1, 4), (2, 5), and (3, 6). The key idea is
to complementary count: we will find the number of permutations that have at
least one of (1, 4), (2, 5) and (3, 6). Note that by symmetry we can just find the
number of permutations starting with any number and then divide by 6 at the end.

We use Principle of Inclusion-Exclusion:
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• (1, 4) exists: Treat it as one block, where we permute the block and the other
4 numbers. The number of ways to do this is 5!, but note that we can swap the
1 and 4 in the block so there are 5! · 2 = 240 orders in this case. By symmetry
there are 240 for (2, 5) and (3, 6).

• (1, 4) and (2, 5) both exist: Treating (1, 4) and (2, 5) both as blocks, when we
consider swapping, we have 4! · 2 · 2 = 96 orders. Similarly, if (1, 4) and (3, 6)
exist there are 96 orders and if (2, 5) and (3, 6) exist there are 96 orders.

• All pairs exist: Treat each pair as a block. The number of orders is thus
3! · 2 · 2 · 2 = 48

The final computation yields 240 + 240 + 240 − 96 − 96 − 96 + 48 = 480. The
number of permutations that start with a 1 and do not have any of the pairs (1, 4),
(2, 5) and (3, 6) is thus 720−480

6 = 40 .

T9. Davin has two cups A and B, each of which can hold 400 mL, A initially with 200
mL of water and B initially with 300 mL of water. During a round, he chooses the
cup with more water (randomly picking if they have the same amount), drinks half
of the water in the chosen cup, then pours the remaining half into the other cup
and refills the chosen cup to back to half full. If Davin goes for 20 rounds, how
much water does he drink, to the nearest integer?

Proposed by: Andrew Wen

Answer: 3900

Solution: Let (A,B) denote the pair consisting of the water volumes (mL) in A
and B, not necessarily ordered.

Note that from any given state (200, n) with 200 ≤ n ≤ 400, Davin drinks n
2 and

the state transforms to (200 + n
2 , 200) ⇐⇒ (200, 200 + n

2 ).

Note n starts as 300, and that 200 + n
2 > n when n > 200. It follows that the

non-200 cup’s volume is continuously increasing. We can model the state of the cups
after rounds as (200, a0), (200, a1), . . . for an increasing sequence ai, with a0 = 300
as well as ai+1 = 200 + ai

2 .

Through induction (or really just pattern observation), one can conclude that

ai =

(
2i − 1

2i

)
· 400 +

(
1

2i

)
· a0 = 400 +

a0 − 400

2i
= 400− 100

2i
.

Note that in round i, he drinks ai
2 = 200 − 50

2i
. Since he goes for 20 rounds, he

starts at round 0 and ends at round 19, hence the total volume drank is

19∑
i=0

(
200− 50

2i

)
= 4000− 50

(
1 +

1

2
+ . . .+

1

219

)
= 3900 +

50

219
≈ 3900

as desired.

T10. Three integers A,B,C are written on a whiteboard. Every move, Mr. Doba can
either subtract 1 from all numbers on the board, or choose two numbers on the
board and subtract 1 from both of them whilst leaving the third untouched. For
how many ordered triples (A,B,C) with 1 ≤ A < B < C ≤ 20 is it possible for Mr.
Doba to turn all three of the numbers on the board to 0?

Proposed by: Yifan Kang
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Answer: 615

Solution: If A+ B ≥ C , we can first subtract ⌊A+B−C
2 ⌋ from A,B , ⌊A+C−B

2 ⌋
from A,C , and ⌊B+C−A

2 ⌋ from B,C . If A+B+C is even, we are done. Otherwise,
we subtract 1 from A,B,C and we are done.

If A+B < C , notice that every time we subtract 1 from C , the value of A+B at
least decreases by 1 . Thus, A+B will gets to 0 before C gets to 0 , and (A,B,C)
is invalid.

Denote the answer for 1 ≤ A < B < C ≤ 2n as f(n). Next, we can prove by
induction that:

f(n) =
n−1∑
k=0

(
2k + 1

2

)
=

n−1∑
k=0

(2k2 + k) =
(n− 1)n(2n− 1)

3
+

n(n− 1)

2

To prove this, notice that f(1) = 0, f(2) = 3, f(3) = 3 + 10 = 13 . It suffices to
prove that f(n+1)− f(n) = n(2n+1) . This can be done by counting the number
of (A,B,C) with C = 2n+ 1 and C = 2n+ 2 .

Finally, the answer for this problem is f(10) = 9×10×19
3 + 10×9

2 = 615 .

T11. Let a triplet be some set of three distinct pairwise parallel lines. 20 triplets are
drawn on a plane. Find the maximum number of regions these 60 lines can divide
the plane into.

Proposed by: Andrew Wen

Answer: 1771

Solution: Let the answer for n triplets be an. Note that a0 = 1. We claim that

an+1 = an + 3(3n+ 1)

holds. Already given n triplets , we will show that adding any one more line adds
at most 3n + 1 new regions. Indeed, say this new line does not pass through
any existing intersection for optimality, and it intersects the existing 3n lines at
P1, P2, . . . , P3n from left to right. Note that these 3n points partition the new line
into 3n+ 1 sections, where each section divides the region containing it in two, as
desired.

During each step of the recursion, we add three such lines that cannot intersect
each other, so we add 3(3n+ 1) new regions each time, proving the recursion.

Now, we evaluate:

a20 = a19 + 3(58)

= a18 + 3(58 + 55)

...

= a0 + 3(1 + 4 + . . .+ 58)

= 1 + 3(10 · 59)

for a final answer of 1771 .

T12. Triangle ABC has circumcircle ω where B′ is the point diametrically opposite
B and C ′ is the point diametrically opposite C. Given B′C ′ passes through the
midpoint of AB, if AC ′ = 3 and BC = 7, find AB′2.
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Proposed by: Andy Xu

Answer: 30

Solution: First note that B′C ′ ∥ BC so B′C ′ also goes through the midpoint
of AC. Let the midpoint of AB be M and the midpoint of AC be N . The key
is that the orthocenter is reflection of B′ about N and C ′ about M . Denote the
orthocenter as H. Since AM = MB and C ′M = MH, we know that AC ′BH is
a parallelogram. This means that BH = AC ′ = 3. Let AH intersect BC at D.
Since C ′HDB is a rectangle, we know that C ′D = BH = 3. Now, let the nine
point circle of △ABC passing through M , N and D be denoted as ω. For the
computation, let C ′M = a and B′N = b. Since ω passes through the midpoint of
BH, by Power of a Point with respect to ω we have

a(2a+ b) =
C ′D

2
· C ′D =

3

2
· 3 =

9

2
.

Additionally, we know that

B′C ′ = 2a+ 2b = 7.

Solving the system yields that a = 1 and b = 5
2 . By Pythagorean Theorem we know

AH =
√
5 and thus AB′2 = AH2 +B′H2 = (

√
5)2 + 52 = 30 .

T13. Determine the number of distinct positive real solutions to

⌊x⌋{x} = 1

2022
x2.

Note: ⌊x⌋ is known as the floor function, which returns the greatest integer less
than or equal to x. Furthermore, {x} is defined as x− ⌊x⌋.
Proposed by: Andrew Wen

Answer: 1975

Solution: We figure out the criterion for there being a solution in [n, n+ 1). Note

that a graphical representation of ⌊x⌋{x} restricted to [n, n+ 1) would simply just
be a steep, concave-up curve from (n, 1) infinitesimally nearing (n+ 1, n) but never
actually hitting it.

In order for f(x) = 1
2022x

2 to have a singular solution in [n, n+1), it must intersect
the induced curve from (n, 1) to (n+ 1, n) once, which only happens if f(n) ≥ 1
and f(n+ 1) < n.

f(n) ≥ 1 ⇐⇒ n2

2022
≥ 1 ⇐⇒ n ≥

√
2022 =⇒ n ≥ 45

and

f(n+ 1) < n ⇐⇒ (n+ 1)2 < 2022n ⇐⇒ n2 − 2020n+ 1 < 0 =⇒ n ≤ 2019.

It is clearly impossible to have two solutions in a singular interval, since as n gets
large, the induced curve from (n, 1) to (n + 1, n) is much more steep than the
parabola, so there is a singular solution in each interval [45, 46), [46, 47), . . . , [2019, 2020)
for a total of 1975 solutions.
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T14. Find the greatest prime number p for which there exists a prime number q such
that p divides 4q + 1 and q divides 4p + 1.

Proposed by: Andrew Wen

Answer: 41

Solution: A quick check shows that p, q must be odd. Without loss of generality,
let p ≥ q. By Fermat’s Little Theorem, we have

2(p+1)q + 1 ≡ 4q + 1 ≡ 0 (mod p)

2(q+1)p + 1 ≡ 4p + 1 ≡ 0 (mod q)

hence 4q ≡ −1 (mod p) =⇒ 16q ≡ 1 (mod p) and 4p ≡ −1 (mod q) =⇒ 16p ≡ 1
(mod q). Therefore, if we let e1 be the order of 16 (mod p) and e2 be the order of
16 (mod q), we have

e1| gcd(q, p− 1)

e2| gcd(p, q − 1).

Note that p ≥ q =⇒ p > q − 1. This implies that e2|1; if not, then p|q − 1
which is clearly not possible. Hence, e2 = 1 and the order of 16 (mod q) is 1 and
q|15 =⇒ q = 3, 5.

Suppose q = 3. Then, 3|16p + 1, which is clearly not possible since 16p + 1 ≡ 2
(mod 3).

Suppose q = 5. Then,
32p+1 ≡ −1 (mod p)

but since p ≥ 5 we may use Fermat’s Little Theorem and get 322 ≡ −1 (mod p)
Therefore, p|1025 =⇒ p = 5, 41. A quick check shows that both work.

Therefore, our solutions are (p, q) = (5, 5), (5, 41), (41, 5) and the greatest prime p
is 41 .

T15. Let IB, IC be the B,C-excenters of triangle ABC, respectively. Let O be the
circumcenter of ABC. If BIB is perpendicular to AO, AIC = 3 and AC = 4

√
2,

then AB2 can be expressed as m
n where m and n are relatively prime positive

integers. Find m+ n.

Note: In triangle △ABC, the A-excenter is the intersection of the exterior angle
bisectors of ∠ABC and ∠ACB. The B-excenter and C-excenter are defined
similarly.

Proposed by: Andy Xu

Answer: 697

Solution: Let I be the incenter of△ABC and let the CIC intersect the circumcircle
of △ABC at X. We will first prove ∠B = 2∠C. Note that by the Incenter-Excenter
Lemma we know that IC is the reflection of I over X and AX = BX = IX.
However, XI = XA = XB = XIC implies ∠ICAI = 90◦ and ∠IBBIC = 90◦.
Thus, AO ⊥ BIB implies that AO ∥ ICB which means ∠IBAO = ∠IBICB. Note
that ∠IBICB = 180− ∠AIB = 180−

(
90 + ∠C

2

)
= 90− ∠C

2 since AIBIC is cyclic.
Additionally, ∠IBAO = ∠CAO + ∠IBAC = 90 − ∠B + ∠IBIC since AICIB is
cylic. Since ∠IBIC = 180 − ∠BIC = 180 −

(
90 + ∠A

2

)
= 90 − ∠A

2 , we know

∠IBAO = 90− ∠B + 90− ∠A
2 = 180− ∠B − ∠A

2 . Therefore,

90− ∠C
2

= 180− ∠B − ∠A
2

= 180− ∠B − 180− ∠B − ∠C
2

= 90− ∠B
2

+
∠C
2
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which implies ∠B = 2∠C as desired.

Let line IBIC to meet line BC at P . Note that ∠AICC = ∠ABI = ∠B
2 = ∠C so

∠ICPC = ∠AICC − ∠ICCP = ∠C − ∠C
2 = ∠C

2 . Therefore, △ICPC is isosceles.
Additionally, observe that △AICC ∼ △ACP because ∠AICC = ∠ACP = ∠C and
∠ICAC = ∠CAP . Thus, AIC

AC = AC
AP which yields AP = 32

3 and ICP = 32
3 − 3 =

23
3 = ICC. The similarity also implies AIC

ICC = AC
PC which yields PC = 92

√
2

9 .

Now, let the line tangent to the circumcircle of △ABC at A intersect line BC at Q.
It follows that ∠QAB = ∠C and ∠AQB = ∠ABC − ∠QAB = 2∠C − ∠C = ∠C.
This means that △AQB is isosceles with AB = QB and △AQC is also isosceles
with AC = AQ. Additionally, ∠PAQ = ∠AQC − ∠APQ = ∠C − ∠C

2 = ∠C
2 so

△APQ is isosceles. Thus,

QC = PC − PQ = PC −AQ = PC −AC =
92

√
2

9
− 4

√
2 =

56
√
2

9
.

Power of a Point yields AQ2 = QB ·QC which is equivalently

AC2 = AB ·QC.

Therefore,

AB =
AC2

QC
=

32
56

√
2

9

=
18
√
2

7

so AB2 = 648
49 giving an answer of 648 + 49 = 697 .
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