# MOAA 2023: Speed Round 

October 7th, 2023

## Rules

- You have 20 minutes to complete 10 problems. Each answer is a nonnegative integer no greater than 1,000,000.
- If $m$ and $n$ are relatively prime, then the greatest common divisor of $m$ and $n$ is 1 .
- No mathematical texts, notes, or online resources of any kind are permitted. Rely on your brain!
- Compasses, protractors, rulers, straightedges, graph paper, blank scratch paper, and writing implements are generally permitted, so long as they are not designed to give an unfair advantage.
- No computational aids (including but not limited to calculators, phones, calculator watches, and computer programs) are permitted on any portion of the MOAA.
- No individual may receive help from any other person, including members of their team. Consulting any other individual is grounds for disqualification.


## How to Compete

- In Person: After completing the test, write your answers down in the provided Speed Round answer sheet. The proctors will collect your answer sheets immediately after the test ends.
- Online: After completing the test, you should input your answers, along with your Team pin and name, into the provided Speed Round Google Form.


## Special Thanks to Our Sponsors!



Maplesórft

## RSM $\sim$

Russian School of Mathematics

SPARC

## Speed Round Problems

S1. [2] Compute $\sqrt{202 \times 3-20 \times 23+2 \times 23-23}$.
S2. [2] In the coordinate plane, the line passing through points $(2023,0)$ and $(-2021,2024)$ also passes through $(1, c)$ for a constant $c$. Find $c$.

S3. [2] Andy and Harry are trying to make an O for the MOAA logo. Andy starts with a circular piece of leather with radius 3 feet and cuts out a circle with radius 2 feet from the middle. Harry starts with a square piece of leather with side length 3 feet and cuts out a square with side length 2 feet from the middle. In square feet, what is the positive difference in area between Andy and Harry's final product to the nearest integer?


S4. [3] A number is called super odd if it is an odd number divisible by the square of an odd prime. For example, 2023 is a super odd number because it is odd and divisible by $17^{2}$. Find the sum of all super odd numbers from 1 to 100 inclusive.

S5. [3] Let $P(x)$ be a nonzero quadratic polynomial such that $P(1)=P(2)=0$. Given that $P(3)^{2}=P(4)+P(5)$, find $P(6)$.

S6. [4] Define the function $f(x)=\lfloor x\rfloor+\lfloor\sqrt{x}\rfloor+\lfloor\sqrt{\sqrt{x}}\rfloor$ for all positive real numbers $x$. How many integers from 1 to 2023 inclusive are in the range of $f(x)$ ? Note that $\lfloor x\rfloor$ is known as the floor function, which returns the greatest integer less than or equal to $x$.

S7. [5] Andy flips a strange coin for which the probability of flipping heads is $\frac{1}{2^{k}+1}$, where $k$ is the number of heads that appeared previously. If Andy flips the coin repeatedly until he gets heads 10 times, what is the expected number of total flips he performs?

S8. [6] In the coordinate plane, Yifan the Yak starts at $(0,0)$ and makes 11 moves. In a move, Yifan can either do nothing or move from an arbitrary point $(i, j)$ to $(i+1, j),(i, j+1)$ or $(i+1, j+1)$. How many points ( $x, y$ ) with integer coordinates exist such that the number of ways Yifan can end on $(x, y)$ is odd?

S9. [6] Let $A B C D$ be a trapezoid with $A B \| C D$ and $B C \perp C D$. There exists a point $P$ on $B C$ such that $\triangle P A D$ is equilateral. If $P B=20$ and $P C=23$, the area of $A B C D$ can be expressed in the form $\frac{a \sqrt{b}}{c}$ where $b$ is square-free and $a$ and $c$ are relatively prime. Find $a+b+c$.

S10. [7] If $x, y, z$ satisfy the system of equations

$$
\begin{gathered}
x y+y z+z x=23 \\
\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}=-1 \\
\frac{z^{2} x}{x+y}+\frac{x^{2} y}{y+z}+\frac{y^{2} z}{z+x}=202
\end{gathered}
$$

Find the value of $x^{2}+y^{2}+z^{2}$.

