MOAA 2024: Speed Round

October 5th, 2024

Rules

- You have 20 minutes to complete 10 problems. Each answer is a nonnegative integer no greater than 1,000,000.
- If m and n are relatively prime, then the greatest common divisor of m and n is 1.
- No mathematical texts, notes, or online resources of any kind are permitted. Rely on your brain!
- Compasses, protractors, rulers, straightedges, graph paper, blank scratch paper, and writing implements are generally permitted, so long as they are not designed to give an unfair advantage.
- No computational aids (including but not limited to calculators, phones, calculator watches, and computer programs) are permitted on any portion of the MOAA.
- No individual may receive help from any other person, including members of their team. Consulting any other individual is grounds for disqualification.

How to Compete

- In Person: After completing the test, write your answers down in the provided Speed Round answer sheet. The proctors will collect your answer sheets immediately after the test ends.
- **Online:** Log into the Classtime session to access the test. Input all answers directly into the provided form. Select for the test to be handed in once you are ready.

Special Thanks to Our Sponsors!

Speed Round Problems

- **S1.** [2] Compute $2024 + 202 \times 4 + 20 \times 24 + 2 \times 24$.
- S2. [2] Let ABCD be a rectangle with AB = 12 and AD = 6. Let E be a point on segment AB such that the area of ΔAED is 24. Find the perimeter of BCDE.
- S3. [2] The integers $1, 2, 3, \ldots, 19, 20$ are written in a row on a blackboard at AlphaStar Academy. Nate draws a vertical line between two consecutive numbers n and n + 1. Given that the sum of the numbers on the left of Nate's line and the sum of the numbers on the right of his line are equal, find n.
- 54. [3] Harry has a fair 4-sided dice while Brandon has a fair 8-sided dice. After they both roll their dice once, the probability that Brandon's number is larger than Harry's number can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find the value of a + b.
- S5. [3] Let x and y be two positive integers that satisfy the following equations:

$$x + y = 33$$
$$gcd(x, y) + lcm(x, y) = 87$$

Find xy.

- S6. [4] Let $\triangle ABC$ be a triangle with AB = 12. The angle bisector of $\angle ABC$ intersects side AC at point D such that AD = 8 and BD = CD. Find the length of BC.
- S7. [5] A set S contains 13 distinct positive integers, and satisfies the following two conditions:
 - a) The number of distinct sums a + b where a, b are two (not necessarily distinct) elements of S is 25.
 - b) The median of S is 38.

Find the smallest possible value for an element of S.

S8. [6] Let x, y, z be positive real numbers satisfying

$$\frac{16 - x^2 + 2yz}{(y+z)^2} + \frac{16 - y^2 + 2xz}{(x+z)^2} + \frac{16 - z^2 + 2xy}{(x+y)^2} = 3$$

The minimum possible value of xyz can be expressed as $\frac{a\sqrt{b}}{c}$, where a, b, c are positive integers such that a and c are relatively prime and b is square-free. Find a + b + c.

- **59.** [6] For a set S, an element $a \in S$ is called an *atom* if there **does not** exist distinct elements $b, c \in S$ such that a = b + c. Let $U = \{1, 2, \dots, 2024\}$. A subset A of U is chosen uniformly at random from all of the subsets of U (including the empty set and the full set). Suppose N is the expected number of *atoms* in A. What is the closest integer to N?
- **S10.** [7] Let P(x) be a polynomial with degree at least 1 that satisfies

$$P(x^{2}+1) - P(x^{2}-1) = kxP(x) + 18x^{2}$$

for all real numbers x where k is a constant. Find the value of P(k).